Hassan Alkomy

Assistant Professor


Department of Engineering

Irving Hall 214

Saint John

1 506 648 5597


PhD (2022), MSc (2016), BSc (2010)

Research interests

  • Dynamics, control, and motion planning
  • Autonomous manufacturing systems
  • Energy-efficient trajectories and controllers
  • Robotics
  • Vibrations

Teaching interests

  • Kinematics and dynamics of machines
  • Mechanics of materials
  • Feedback control
  • Vibrations

Selected publications

Kang, J., Shan, J., & Alkomy, H. (2023). “Control Framework for a UAV Slung-Payload Transportation System.” IEEE Control Systems Letters.

Alkomy, H., & Shan, J. (2023, June). “Quadrotors with Slung Payloads: Energy Analysis and Experimental Validation.” In 2023 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 671-678).

Alkomy, H., & Shan, J. (2022). “Investigating the Effects of Polynomial Trajectories on Energy Consumption of Quadrotors.” IEEE/ASME Transactions on Mechatronics.

Alkomy, H., & Shan, J. (2022, August). “Kinematically-Constrained Continuous-Path Polynomial Trajectories for Quadrotors.” In 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE) (pp. 1411-1416).

Alkomy, H., & Shan, J. (2022, June). “An energy analysis of quadrotors with cable-suspended payloads.” In 2022 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 49-56).

Alkomy, H., & Shan, J. (2021). “Vibration reduction of a quadrotor with a cable-suspended payload using polynomial trajectories.” Nonlinear Dynamics, 104(4), 3713-3735.

Alkomy, H., & Shan, J. (2021). “Modeling and validation of reaction wheel micro-vibrations considering imbalances and bearing disturbances.” Journal of Sound and Vibration, 492, 115766.

Mohamed, K., Elkaranshawy, H., Ashour, A., & Alkomy, H. (2021). “Novel methods to escape Painlevé paradox for sliding multi-body systems.” Alexandria Engineering Journal, 60(1), 1639-1645.

Elkaranshawy, H. A., Mohamed, K. T., Ashour, A. S., & Alkomy, H. (2017). “Solving Painlevé paradox:(P–R) sliding robot case.” Nonlinear Dynamics, 88, 1691-1705.