Global Site Navigation (use tab and down arrow)

NB-IRDT

Associations between ambient air pollution and daily mortality in a cohort of congestive heart failure: Case-crossover and nested case-control analyses using a distributed lag nonlinear model

Author: Stephane Buteau, Mark S.Goldberg, Richard T. Burnett, Antonio Gasparrini, Marie-France Valois, James M. Brophy, Dan L. Crouse, Marianne Hatzopoulou
Year: 2018
Category: Health Publications

Read the journal article in Science Direct

Background 

Persons with congestive heart failure may be at higher risk of the acute effects related to daily fluctuations in ambient air pollution. To meet some of the limitations of previous studies using grouped-analysis, we developed a cohort study of persons with congestive heart failure to estimate whether daily non-accidental mortality were associated with spatially-resolved, daily exposures to ambient nitrogen dioxide (NO2) and ozone (O3), and whether these associations were modified according to a series of indicators potentially reflecting complications or worsening of health.

Results

The magnitude of the cumulative as well as the lag-specific estimates of association differed in many instances according to the metric of exposure. Using the back-extrapolation method, which is our preferred exposure model, we found for the case-crossover design a cumulative mean percentage changes (MPC) in daily mortality per interquartile increment in NO2 (8.8 ppb) of 3.0% (95% CI: −0.9, 6.9%) and for O3 (16.5 ppb) 3.5% (95% CI: −4.5, 12.1). For O3 there was strong confounding by weather (unadjusted MPC = 7.1%; 95% CI: 1.7, 12.7%). For the nested case-control approach the cumulative MPC for NO2 in daily mortality was 2.9% (95% CI: −0.9, 6.9%) and for O3 7.3% (95% CI: 3.0, 11.9%). We found evidence of effect modification between daily mortality and cumulative NO2 and O3 according to the prescribed dose of furosemide in the nested case-control analysis, but not in the case-crossover analysis.

Conclusions

Mortality in congestive heart failure was associated with exposure to daily ambient NO2 and O3 predicted from a back-extrapolation method using a land use regression model from dense sampling surveys. The methods used to assess exposure can have considerable influence on the estimated acute health effects of the two air pollutants.