Comparing the health effects of ambient particulate matter estimated using ground-based versus remote sensing exposure estimates | UNB

Global Site Navigation (use tab and down arrow)

NB-IRDT

Comparing the health effects of ambient particulate matter estimated using ground-based versus remote sensing exposure estimates

Author: Michael Jerrett, Michelle C. Turner, Bernardo S. Beckerman, C. Arden Pope III, Aaron van Donkelaar, Randall V. Martin, Marc Serre, Dan Crouse, Susan M. Gapstur, Daniel Krewski, W. Ryan Diver, Patricia F. Coogan, George D. Thurston, Richard T. Burnett
Year: 2017
Category: Health Publications

Read the journal article in Environmental Health Perspectives

Background

Remote sensing (RS) is increasingly used for exposure assessment in epidemiological and burden of disease studies, including those investigating whether chronic exposure to ambient fine particulate matter (PM2.5) is associated with mortality.

Objectives

We compared relative risk estimates of mortality from diseases of the circulatory system for PM2.5 modeled from RS with that for PM2.5 modeled using ground-level information.

Methods

We geocoded the baseline residence of 668,629 American Cancer Society Cancer Prevention Study II (CPS-II) cohort participants followed from 1982 to 2004 and assigned PM2.5 levels to all participants using seven different exposure models. Most of the exposure models were averaged for the years 2002–2004, and one RS estimate was for a longer, contemporaneous period. We used Cox proportional hazards regression to estimate relative risks (RRs) for the association of PM2.5 with circulatory mortality and ischemic heart disease.

Results

Estimates of mortality risk differed among exposure models. The smallest relative risk was observed for the RS estimates that excluded ground-based monitors for circulatory deaths [RR = 1.02, 95% confidence interval (CI): 1.00, 1.04 per 10 μg/m3 increment in PM2.5]. The largest relative risk was observed for the land-use regression model that included traffic information (RR = 1.14, 95% CI: 1.11, 1.17 per 10 μg/m3 increment in PM2.5).

Conclusions 

We found significant associations between PM2.5 and mortality in every model; however, relative risks estimated from exposure models using ground-based information were generally larger than those estimated using RS alone.