FOR

FORESTRY

Note: See beginning of Section H for abbreviations, course numbers and coding.

A minimum grade of C is required for prerequisite courses.

CORE COURSES

FOR 1001 Introduction to Forestry 4 ch (3C 3L)
This course provides students with an overview of field forestry skills through collection and analysis of basic stand-level inventory data. Emphasis is on developing basic mensuration and computation skills through a series of laboratory exercises and solving practical problems. Students learn how to quantify stand structure and to use basic quantitative information to make forestry decisions.

FOR 1285 Introduction to GIS 3 ch
An online course, covering basic and advanced GIS functionality using ArcView 3.x across a range of forestry applications. Emphasizes forest inventory data and its use in characterizing timber and non-timber values of forests.

FOR 2006 Management of Natural Systems 4 ch (3C 3L)
Introduces management design issues and practices for a variety of natural systems so that students can effectively work across related disciplines. Objectives: (a) quantitatively design and evaluate strategies aimed at producing a desired set of outcomes for natural systems, including forests, wildlife populations, and hydrological networks; and b) communicate technical information clearly and succinctly in written format. Prerequisite: ENR 1001. Co-requisite: ENR2004 or permission of the instructor.

FOR 2113 Introduction to Forest Wildlife Ecology 3ch (3C)
Emphasizes interdependence of forest organisms and the terrestrial and aquatic components of their environment, especially in the context of industrial forestry. Introduces an ecological approach to impacts of harvesting on forest ecosystems and the major groups of wildlife inhabiting forests, including species at risk. Covers identification and habitat requirements of selected wildlife species, and applicable legislation.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR 2205</td>
<td>Quantitative Methods</td>
<td>3 ch</td>
<td>(2C 3L)</td>
<td>Applications in collection, organization, and analysis of basic forestry, biological and other environment-related data. Emphasis on the use of statistics as a problem-solving and decision-making tool through basic numerical and visual statistical techniques, iterative computer graphics, and programming.</td>
</tr>
<tr>
<td>FOR 2275</td>
<td>Relational Database Management in Forestry</td>
<td>3 ch</td>
<td></td>
<td>This online course introduces DBMS (database management system) concepts, terminology and techniques, using MS Access and forestry data and applications.</td>
</tr>
<tr>
<td>FOR 2281</td>
<td>GIS in Forestry I</td>
<td>2 ch</td>
<td>(web-based)</td>
<td>An web and lab-based course that introduces GIS and its application in forest inventory and mapping. Students will complete the course with a good grasp of the nature of GIS data employed in forestry, and its manipulation and processing using ArcGIS software. Students cannot receive credit for both FOR 2281 and FOR 2285.</td>
</tr>
<tr>
<td>FOR 2282</td>
<td>GIS in Forestry II</td>
<td>2 ch</td>
<td>(web-based)</td>
<td>A web and lab-based course that explores the analytical power of GIS in forestry. Students will complete the course with advanced geoprocessing and problem-solving skills. Students cannot receive credit for both FOR 2282 and FOR 2285. Prerequisite: FOR 2281</td>
</tr>
<tr>
<td>FOR 2286</td>
<td>GIS in Forestry III</td>
<td>2 ch</td>
<td></td>
<td>For students who wish to extend their GIS expertise with special analytical possibilities afforded by rasters using the latest ArcGIS software. This web-based course introduces the Spatial Analyst extension, and the ModelBuilder, highlighting applications in forestry involving reclassification, overlay, and distance and connectivity functions. Prerequisites: FOR 2281</td>
</tr>
<tr>
<td>FOR 2345</td>
<td>Meteorology and Hydrology (A)</td>
<td>4 ch</td>
<td>(3C 3L)</td>
<td>Introduces basic aspects of meteorology, hydrometeorology, and hydrology at global, regional and local scales. Emphasis is given to soil-vegetation-atmosphere interactions. Topics include energy balances, thermal, wind, and precipitation regimes, and phenomena associated with the hydrological cycle.</td>
</tr>
<tr>
<td>FOR 2416</td>
<td>Structure and Development of Woody Plants</td>
<td>3 ch</td>
<td>(2C 3L)</td>
<td>Development of woody-plant structure from embryo to maturity. Topics include morphogenesis and basic anatomy, development of crown architecture, interrelationships between crown and stem development, wood and elements of wood quality, mechanisms of asexual and sexual reproduction. For each topic, differences among major genera will be considered. Prerequisite: FOR 2425</td>
</tr>
<tr>
<td>FOR 2425</td>
<td>Autecology of Forest Vegetation</td>
<td>5 ch</td>
<td>(3C 3L)</td>
<td>Recognition and identification of species, environmental requirements, and persistence mechanisms of various life-forms of forest vegetation; interpretation of silvicultural characteristics of tree species; analysis of stands of trees in relation to general site conditions and relative stage of development; and evaluation of interrelationships among components of forest vegetation over time, including likely responses to perturbation or to interventions of various kinds. Prerequisite: a basic university course in Biology or Botany; Co-requisite: FOR 2435</td>
</tr>
<tr>
<td>FOR 2432</td>
<td>Forest Inventory and Growth</td>
<td>4 ch</td>
<td>(3C 3L)</td>
<td>This course focuses on the design and analysis of forest-level inventories. Concepts of stratification and multistage sampling are presented. Approaches to modelling and predicting stand growth and inventory updates are</td>
</tr>
</tbody>
</table>
The course will deal with fundamentals of forest tree physiology and genetics, especially basic physiological processes and their genetic and environmental control underlying growth, development, functioning, acclimation and adaptation of forest trees. The laboratory sessions will focus on reaffirming selected concepts and material taught in the class through practical experiments and demonstrations.

FOR 2435 Fundamentals of Forest Tree Physiology and Genetics 3 ch (2C 3L)

The course will deal with fundamentals of forest tree physiology and genetics, especially basic physiological processes and their genetic and environmental control underlying growth, development, functioning, acclimation and adaptation of forest trees. The laboratory sessions will focus on reaffirming selected concepts and material taught in the class through practical experiments and demonstrations.

FOR 2505 Soils for Plant Growth 4 ch (2C 3L)

Students examine relationships between soils and plants, and related roles of water and nutrients. Factors that restrict root growth, and processes that influence soil development are revealed through field exercises and laboratory work. Effects of natural and anthropogenic disturbances on forest soils and subsequent plant responses are emphasized.

FOR 2703 Forest Operations 3 ch (2C 3L)

Students examine relationships between soils and plants, and related roles of water and nutrients. Factors that restrict root growth, and processes that influence soil development are revealed through field exercises and laboratory work. Effects of natural and anthropogenic disturbances on forest soils and subsequent plant responses are emphasized.

FOR 2886 Wood Technology 3ch (2C 3L)

Familiarity with wood (including reaction and juvenile wood), bark, and root anatomy is developed using micrographs and samples. Wood identification is done using gross (hand lens) and minute (microscopic) features with the assistance of texts and keys. Physical properties of wood (specific gravity, moisture content, and dimensional change) are illustrated in laboratory experiments. Practical problems are used to familiarize students with measurement of wood products including the effects of moisture, log scaling by weight and volume, lumber and panel products measurement, pulp yield and comparative units of mass and volume measurement. Presentations with illustrations and product samples are used to familiarize students with the materials and products made from wood.

FOR 2933 Bioethics in Forestry 3 ch (3C)

This course deals with the moral decision-making in the management of the forest, its land, atmosphere, and living organisms. It considers uses and abuses of the forest environment that raise ethical issues of importance and integrity. The course will include an introduction to ethical principles and systems of ethics, dynamics and decision-making individually as well as collectively, concepts and assumptions about the environment, the rights of nature, conflicting values about nature implicit in anthropocentrism and biocentrism, and the need for interdisciplinary dialoguing in the formulation of policy, laws, and regulations.

FOR 2946 Bioethics, Emotional Intelligence, and the Nature of Spirituality 3 ch (3C)

This course is aimed at bringing together the three notions cited in the title with respect to actions taken and decisions made as life interacts among individuals and groups in today’s world. Emphasis will be placed primarily on the disciplines of Forestry and Biology. The course will include: a) an introduction to principles and systems of ethics and what light these cast on human behavior; b) emotional intelligence and its usefulness in understanding basic human interactions; and c) spirituality in terms of a common element in human nature. With this background, consideration will then be given to dynamics of decision-making, individually as well as collectively, concepts and assumptions about the environment, the rights of nature, conflicting values about nature implicit in anthropocentrism and biocentrism, and the need for interdisciplinary dialoguing in the formulation of policy, laws,
and regulations.

FOR 3000 Business Management and Human Factors in the Forestry and Environmental Sectors 3 ch (3C 6L)

This course provides students with basic skills and abilities needed to effectively manage the business and human aspects of environmental and forest management. Students will acquire basic abilities to budget and monitor projects, conduct financial analyses to evaluate management alternatives, evaluate financial statements, promote motivation, and facilitate effective communication and teamwork.

FOR 3005 Silviculture And Stand Intervention Design 5 ch (3C 6L)

Takes a design-based approach to silviculture. Students develop stand intervention plans for the main stages of stand development integrating the biology of growing trees, engineering of conducting operations, and economics of costing operations.

FOR 3006 Forest Management 4 ch (3C 6L)

Continuation of FOR 3005, introduction to linear programming in forest management. Introduction to elements of resource modelling and productivity assessment (e.g. water flow) at the stand level. Analysis of the impact of alternative interventions at the operational level and their integration with strategic and tactical plans, including: financial and socioeconomic evaluation of forest management and resulting value flows; and risk management for insect or pathogenic attacks and wildfire. Post-implementation assessment of activities as a critical part of the management process. Prerequisite: FOR 2006, FOR 3005, or permission of instructor.

FOR 3101 Forest Economics 3 ch (3C)

This course applies economic tools to help make informed forestry decisions that will most effectively meet private and social goals. Prerequisite: Some experience with regression analysis.

FOR 3303 Photointerpretation, Photogrammetry and Remote Sensing in Forestry 3 ch (3*4)

Provide interpretation of aerial photographs of forested areas for stand and site characterization. Remote sensing products other than aerial photographs, such as digital optical images, thermal infrared, and radar images will be introduced. Basics in digital image processing will be covered to address the conversion of remote sensing images to GIS layers. It is a self-paced, web-based course without scheduled lectures. UNB campus students do labs during scheduled sessions. Labs are self-paced and web-based for Open Access Learning Program students. Le cours est aussi disponible en français. Note: Students cannot receive credit for both FOR 3303 and FOR 3313.

FOR 3313 Digital Image Processing in Remote Sensing 3 ch

To initiate students to the processing of digital images as acquired by Earth’s Observation Satellites like LANDSAT-TM, SPOT-HRV and NOAA-AVHRR. Course topics include characteristics of digital images, image displaying, pre-classification processing, image correction, image classification, and spatial image processing and analysis. The course is fully web-based. (The course does not deal with photo-interpretation.) Le cours est aussi disponible en français. Este curso también está disponible en español. Note: Students cannot receive credit for both FOR 3313.
Prerequisites:
- Molecular breeding;
- Genetic engineering of forest trees.

Prerequisite:
- Discovery and functional analysis of genes;
- Organization and improvement concepts, methods and programs;
- Silvicultural practices and genetic resource conservation;
- Other edible plants; and
- Essential oils.

The course provides lectures and laboratory exercises dealing with chemical, ion and flow, and carbon and nutrient cycling.

Behaviour Prediction system, fire ecology, and fire management strategies, tactics and operations.

INFLUENCES OF CLIMATE, TOPOGRAPHY/TERRAIN, AND STAND AND FUEL TYPES ARE COVERED. CONCEPTS OF WATERSHED CONSERVATION ARE INTRODUCED AS WELL AS PRINCIPLES AND MODELS DEALING WITH WATER RETENTION AND FLOW, AND CARBON AND NUTRIENT CYCLING IN PRIMARY FOREST WATERSHEDS. FIRE MANAGEMENT CONCEPTS DEAL WITH THE FIRE WEATHER INDEX SYSTEM, THE FIRE BEHAVIOUR PREDICTION SYSTEM, FIRE ECOLOGY, AND FIRE MANAGEMENT STRATEGIES, TACTICS AND OPERATIONS. PREREQUISITES: FOR 3445 OR PERMISSION OF INSTRUCTOR.

FOR 3457 Forest Watershed and Water Quality Management 3 ch (2C 3L)

FOR 3853 Problem-Solving and Interpersonal Communication 3 ch (3C)

FOR 3885 Non-Timber Forest Products 3 ch (3C)

Provides an overview of the diversity of non-timber forest products (NTPs) in Canada and North America. Introduces major classes of NTPs including medicinal plants; maple and birch products; mushrooms, fiddleheads and other edible plants; and essential oils. Introduces the science behind the production and commercial use of...
selected NTFP examples. Discusses issues of stewardship, sustainability and certification of non-timber forest products, emphasizing management of forest lands for multiple products and values.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR 4013</td>
<td>Basic Woodlot Management</td>
<td>3 ch (3C)</td>
</tr>
<tr>
<td></td>
<td>Introduction to basic woodlot management, covering such topics as planning, harvesting, silviculture, Christmas trees, maple products, wildlife and recreation, economics, owner characteristics and organization, government programs and policies and industry relations as they relate to small woodlots. Prerequisite: Open to 4th- and 5th-year Faculty of Forestry and Environmental Management students, or permission of instructor.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR 4020</td>
<td>Management Practicum</td>
<td>8 ch (1C 3L)</td>
</tr>
<tr>
<td></td>
<td>Practical exercise in forest landscape management, designed to provide an opportunity to integrate skills and knowledge gained throughout the program. Working with a client and/or the public, students will develop goals and objectives, design and gather inventory data (if required), then develop an integrated landscape management plan at the strategic, tactical and operational levels. Learning modules will be provided specific to the needs of the project. Additional topics include project management, conflict resolution, professional practice and forestry associations. The project requires completion of a group report and presentation. Prerequisites: FOR 2281, FOR 3005, FOR 3006, FOR 3456. Co-requisite: FOR 4096</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR 4096</td>
<td>Forest Landscape Design and Management</td>
<td>5 ch (3C 3L)</td>
</tr>
<tr>
<td></td>
<td>Integrates value-flow planning with landscape planning by: 1) introducing students to the concepts and techniques used in dealing with the spatial dimensions in forest management planning; 2) introducing students to the difficulties involved with management for a complex set of demands, where resources demanded have production functions that include complex spatial and temporal relationships of inputs, many of which are unknown; and 3) exposing students to techniques available to forecast landscape patterns resulting from flow driven management planning, and to design landscape patterns based on analysis of natural dynamics. Prerequisite: FOR 3006, or permission of instructor.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR 4205</td>
<td>Quantitative Forest Characterization (O)</td>
<td>3 ch (3C)</td>
</tr>
<tr>
<td></td>
<td>Students will construct from raw data sets a qualified forest characterization suitable for input to forest level planning models. Model runs will be made using that input and compared to assess sensitivity of outcomes to inputs.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR 4206</td>
<td>Forest Biometry II (A)</td>
<td>3 ch (2C 2L)</td>
</tr>
<tr>
<td></td>
<td>Additional topics in data collection and analysis, including multiple linear regression, analysis of covariance, basic principles of experimental design, analysis of factorial arrangements of treatments, analysis for some special-purpose designs. Prerequisite: STAT 2253, or permission of instructor.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR 4286</td>
<td>Géomatique avec ArcGIS</td>
<td>3 ch (3C)</td>
</tr>
<tr>
<td></td>
<td>Le cours présente les concepts de base liés au système d’information géographique (SIG). En particulier, vous apprendrez comment créer et éditer des données spatiales, travailler avec les tables attributaires, chercher une information dans une base de données SIG, comment présenter des données spatiales sous formes de cartes. Le cours est basé sur le logiciel SIG, ArcGIS. Le cours n’a pas de cours magistraux ni de laboratoires parce qu’il est donné via Internet. Le cours n’est donné qu’en français.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR 4303</td>
<td>Optical, Thermal Infrared and Radar Remote Sensing</td>
<td>3 ch (3C/L)</td>
</tr>
</tbody>
</table>
| | An introduction to remote sensing methodologies for observing the Earth’s surface from different vantage points (from the ground, from airplanes, and from space). The course is fully web-based. It allows for a quantitative understanding of optical, thermal infrared, and radar images as acquired by Earth’s observation satellites like
LANDSAT-TM, SPOT-HRV, NOAA-AVHRR and RADARSAT. Remote sensing applications are taken from the fields of forestry, agriculture, geology, oceanography, hydrology, and environmental studies. It does not deal with photo-interpretation. The course is recommended for students intending to do a forestry senior thesis in remote sensing.

Le cours est aussi disponible en français.

FOR 4304 Image Processing Methods for Radarsat-2 and Polarimetric Images 3 ch
Introduction to image processing methods for RADARSAT-2 images (with a particular reference to polarimetric images). The course is fully web-based. It allows the quantitative understanding of the nature of radar images and polarimetric images and how they can be processed to extract relevant information. It includes applications in forestry, agriculture, geology, oceanography, hydrology, and environmental studies. Le cours est aussi disponible en français.

FOR 4412 Forest Nursery Practices (A) 3 ch
Students become familiar with the full range of topics related to seedling production for forestry. Students learn greenhouse techniques by growing seedlings from seed.

FOR 4425 Conservation Genetics (A) 3 ch (3C)
This class will examine the application of genetic principles, concepts and biotechnologies in conservation, sustainable management and restoration of natural and managed resources. The topics will include: concepts of genetic resources, genetic biodiversity and other population genetic parameters, demography, conservation, sustainable management, ecological restoration, and minimum viable population size; indicators for population viability; exploration, evaluation, utilization, and conservation of genetic resources; genetic consequences of habitat fragmentation, resource management practices, domestication, climate change, and natural disturbance; and challenges, opportunities and strategies for conservation and sustainable management of genetic resources. Prerequisite: BIOL 2053 or BIOL 2142 or permission of instructor.

FOR 4437 Methods in Tree Physiology Research (A) 3 ch (6L)
Introduction to experimental physiology. Hands-on training in use of equipment including uv/vis spectrophotometry, tissue culture and general procedures. Prerequisite for students intending to do FOR 4992/5991 in physiology Prerequisites: BIOL 1012, BIOL 1017, FOR 2420, 2435, or permission of instructor.

FOR 4438 Biochemistry of Trees (A) 3 ch (2C 3L)
Introduction to metabolic pathways of economic or ecological significance, including biosynthesis of pectin, hemicelluloses, starch, callose, cellulose, lipids, terpenoids, flavonoids, pigments, and lignin. Prerequisites: BIOL 1012, BIOL 1017, FOR 2420, 2435, or permission of instructor.

FOR 4452 Ecological Modelling (A) 4 ch (2C 3L)
A workshop course in the modelling of ecological systems. Each student builds a model. Prerequisite: Concepts of forest ecology or equivalent; some knowledge of computer programming, or permission of instructor.

FOR 4456 Forested Ecosystems (A) 3 ch (2C 3L)
An analysis of the forest as an ecosystem, focusing on the interactions among ecosystem components (vegetation, soil, water, atmosphere, wildlife) and the effects of perturbations on the ecosystem. Analysis of the major forest ecosystem types of Canada and the adjacent U.S.A. Prerequisite: FOR 3445, or an introductory ecology course, or permission of instructor.

FOR 4466 Advanced Studies in Forest Plants and Their Environment 4 ch (3C 3L)
The course addresses ecophysiological relationships within forest stands (energy capture, respiration, photosynthetic allocation, transportation, etc.) integrated to the stand level. Specialized topics include tree
nutrition (nutrient deficiencies, diagnosis, mediative action), ecotoxicology (role of heavy metals) and reactions of trees to air pollutants (SO₂, oxone) and climate change.

FOR 4506 Advanced Studies in Forest Soils and Hydrology 4 ch (3C 3L)
Advanced studies addressing impacts of forest management of forest soils and streams. Topics include sustainability of soil quality, site preparation effects on soil moisture, nutrient supply, soil temperature, water balance, snowmelt, water quality, role of riparian buffer zones.

FOR 4545 Biodiversity and Ecosystem Management 4 ch (3C 3L)
To learn concepts and measurements about biophysical landscape dynamics, strategies for the maintenance of biodiversity, and ecosystem based forest management. To use contemporary examples of management of ecosystems. Prerequisite: Prior ecology course.

FOR 4576 Forest Hydrology and Aquatic Habitat 3 ch (3C)
This course helps students to develop analytical skills for solving hydrological problems under varying hydrothermal conditions pertaining to best forest management practices and operations. Topics include hydrometric data generation, hydrograph analyses, and the modeling of peak flow of extreme events. The course also introduces tools to assess land-use impacts on slopes, soils, streams and lakes, to protect water quality and aquatic habitats.

FOR 4586 Fire Management (A) 3 ch (2C 2L)
Topics covered include fuels and fire behavior, fire danger rating, prevention, prediction, detection, suppression, and overall planning and fire management systems.

FOR 4602 Ecology of Forest Insects (A) 3 ch (2C 3L)
Evaluates factors influencing insects in forest communities with emphasis on predator-prey, parasitoid-host and insect-plant interactions as well as natural selection, physiological constraints, behaviour and population dynamics.

FOR 4615 Insect Management 3 ch (2C 3L)
Taxonomy, importance and ecology of major insect families; damage assessments, insect population dynamics and control strategies and tactics.

FOR 4625 Integrated Management of Insects and Fungi 4 ch (3C 3L)
Presents a common approach to management of insects and fungi and their interactions at the stand/population and landscape levels. Major components to be discussed are: monitoring and prediction of hazard and risk; damage prediction based on organism population dynamics; management strategies and tactics including acquisition and deployment of resources, control methods and cost benefit analyses. Taxonomy of major families of insects and diseases will be covered in laboratory sessions. Prerequisites: FOR 3445, FOR 3455, and FOR 3006, or permission of instructor.

FOR 4655 Wildlife Investigational Techniques (A) 3 ch (3C/L)
Designed to introduce techniques available for conducting investigations in support of management objectives. Labs will provide hands-on experience from radio telemetry to necropsy techniques. Prerequisites: Substantial
completion of Year 3, BScF, or permission of instructor.

FOR 4676 Disease Control 3 ch (2C 2L)
Survey of important tree diseases, impacts on tree and forest growth, control methods.

FOR 4713 Advanced Stand Intervention Planning (O) 3 ch
Silviculture and the dynamics of complex stand structures managed on an uneven-aged basis is the focus. Stand intervention plans are developed, defended and implemented.

FOR 4721 Urban Land Use Policy, Planning and Processes 3ch (3C 0L)
This course provides existing BScF/ENR students and those in a proposed Urban Forestry Major with practical knowledge of the governance of urban areas, and how the political and administrative processes affect the development and protection (or not) of trees and forested landscapes within the urban environment. It is intended as a core course in the BScF (Urban Forestry Major) program and can be taken as an elective by any students in the BScF or ENR programs

FOR 4785 Urban Forest Conservation and Management 4ch (3C 3L)
Examines the planning and management of trees and forests associated with urban areas with a focus on protection and enhancement. Includes tree/forest resource inventories, techniques to determine the values of urban residents concerning trees and forests, assessment of the benefits and procedures for urban watershed protection, and techniques to maintain or increase the health of trees and forests in urban green spaces.

FOR 4881 Kiln Drying and Preserving Wood 3 ch (3C/L)

FOR 4910 Directed Studies in Forestry 6 ch
With approval of the Faculty, a student may carry on directed studies of specific problems or areas in forestry.

FOR 4911 Directed Studies in Forestry 4 ch
With approval of the Faculty, a student may carry on directed studies of specific problems or areas in forestry.

FOR 4912 Directed Studies in Forestry 3-5 ch
With approval of the Faculty, a student may carry on directed studies of specific problems or areas in forestry. Number of credit hours will be determined by the Faculty and based on the nature, duration, and complexity of the undertaking.
FOR 4973 Forestry Field Camp II 2 ch (6D)
An intensive 6-day series of field exercises, starting before the Fall Term, involving low student/faculty ratios, and designed to improve integrative and quantitative-forecasting skills. Evening sessions provide overviews of the scope of forest-ecosystem management generally, and in relation to the specific field-camp situation. Students are charged for food and lodging and part of travel costs. Prerequisite: Substantial completion of Years 1-3 core.

FOR 4991 Honours Research Project 6 ch [W]
Forestry honours students must complete a research project that is approved by the Faculty and supervised by a Faculty member. This course involves submitting a detailed project report and an oral defense in a seminar-style presentation. Students should consult with a faculty advisor prior to the end of third year to discuss project requirements and potential topics. Note: Minimum CGPA for acceptance is 3.0

FOR 4994 SENIOR TECHNICAL REPORT 3 ch
A technical description and analysis of a study, employment project, or literature review developed under the guidance of a faculty member. Available only to students in their fourth year or by permission of the instructor.

FOR 5983 International Forest Studies 3 ch
This course focuses on the biophysical, historical, social and economic factors influencing forest management in a region outside of Canada. The purpose of the course is to better understand forest management practices within the Canadian context by gaining an understanding of how these factors influence forest management in a region outside of Canada. A 10 to 14-day field trip to the region is required. Prominent forestry professionals from across Canada will join with the students. Each year a new region is selected. Students will be charged for travel costs associated with this course. Limited enrolment.