\qquad First name: \qquad

Middle initial(s): \qquad

Date of birth: \qquad

High school: \qquad Teacher: \qquad

Credit at (circle one): UNB-Fredericton UNB-Saint John

UNIVERSITY OF NEW BRUNSWICK DEPARTMENT OF MATHEMATICS \& STATISTICS

Calculus Challenge Exam
Wednesday, June 7, 2017

Time: 3 hours (no calculators, notes or electronics).

Page	Points	Mark
3	20	
4	12	
5	10	
6	10	
7	8	
8	14	
9	7	
10	7	
$11-12$	12	
Total:	100	

Instructions

1. This exam has 13 pages (including this cover page) and is printed double-sided.
2. Do each question in the indicated space. Pages 2 and 13 are intentionally left blank in case you need additional space. If you do, clearly indicate where your answers are located. Please do not separate pages of the exam.
3. Show your work! Full marks are awarded only when the answer is correct and supported with reasons.
4. Calculators, cell phones, laptops, tablets, and all other electronic devices are not permitted. Notes, books, scrap paper and aids of any kind are forbidden.
[20] 1. Find y^{\prime}. Answers need not be simplified.
(a) $y=3\left(e^{t}+\ln t\right)^{2}$
(b) $y=x^{3 / 2} \tan (1 / x)$
(c) $y=\sec \left(t^{2}\right)+\sin ^{2} t$
(d) $y=\frac{8^{x}}{x^{8}}+\log _{7}(x)$
(e) $y=\arctan \sqrt{1-x}$
[12] 2. Find the indicated limits. If the limit is infinite, write " $+\infty$ " or " $-\infty$ ". If the limit does not exist and is not infinite, write "DNE". You may use L'Hospital's Rule where appropriate. Justify your answers.
(a) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x}$
(b) $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+x+1}}{x+1}$
(c) $\lim _{x \rightarrow \infty} \frac{5 x^{2}}{e^{x}}$
(d) $\lim _{x \rightarrow 3} \frac{\sqrt{x^{2}-8}}{x^{2}-x-4}$
5. Consider the function given by $f(x)=\sqrt{5-x}$.
(a) Use the limit definition of the derivative to compute $f^{\prime}(1)$.
[3] (b) Find an equation of the line tangent to the curve $y=\sqrt{5-x}$ at the point $(1,2)$.
[5] 4. Consider the curve described by the equation

$$
\cos \left(y^{3}-1\right)-5 x y=x^{3}+6 .
$$

Find $\frac{d y}{d x}$ (in terms of x and y).
[5] 5. Find $\frac{d y}{d x}$ when

$$
y=(\ln x)^{\ln x}
$$

[8] 6. Consider the function f given by $f(x)=\frac{2 x^{2}}{x^{2}-1}$.
(a) The graph of $y=f(x)$ has a horizontal asymptote at $y=2$. Write down and evaluate a limit that confirms this.
(b) The graph of $y=f(x)$ has a vertical asymptote at $x=-1$. Write down and evaluate a limit that confirms this.
(c) The graph of $y=f(x)$ does not have a vertical asymptote at $x=0$. Write down and evaluate a limit that confirms this.
(d) The function f has a discontinuity at $x=-1$. Using the definition of continuity, explain why.
[7] 7. Consider the function f given by $f(x)=2 x^{5}+3 x-1$.
(a) Show that $f(x)=0$ has at least one (real) solution, that is, there is some number c such that $f(c)=0$. Justify your answer.
(b) Show that $f(x)=0$ has exactly one (real) solution, that is, there is only one number c such that $f(c)=0$. Justify your answer.
[7] 8. A virus spreads through a community according to the model $f(t)=1000 t e^{-4 t}$ where $f(t)$ is the number of people infected at time t, and t is measured in years.
(a) How many people are infected initially?
(b) What happens to the number of people infected in the long term?
(c) Does f have a maximum on the interval $[0, \infty)$? If so, find it. If not, explain how you know this.
[7] 9. A right triangle with hypotenuse of length 5 cm is revolved about one of its legs to create a (right, circular) cone. Maximize the volume of the cone. That is, find the dimensions of the largest possible cone that can be made this way. Note that the volume of a cone with height h and base radius r is give by $V=\frac{1}{3} \pi r^{2} h$.

[7] 10. A rocket is travelling away from Earth. The gravitational force on the rocket, in Newtons, is given by

$$
F=\frac{k}{r^{2}}
$$

when the rocket is $r \mathrm{~km}$ from the centre of the earth. The constant k is $10^{13} \mathrm{~N} \cdot \mathrm{~km}^{2}$. If the force is decreasing at a rate of 5 Newtons per second when the rocket is $10,000 \mathrm{~km}$ away from the centre of the earth, how fast is the rocket travelling? (A full solution should include a simplified final answer with units.)
[12] 11. This question extends over two pages. Answer all parts of this question with regard to the graph of $y=f(x)$, where $f(x)=\frac{8 x^{2}}{(x+2)^{3}}$.
(a) State the domain of f.
(b) Find the intervals on which f is increasing, and the intervals on which it is decreasing.
(c) Find the coordinates of any local/relative extrema.
(d) Find the intervals on which the graph is concave up, and the intervals on which it is concave down.
(e) Sketch the graph of $y=f(x)$, taking care to incorporate your answers to (a) through (d) above.

