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Abstract 

Introduction of the new pavement design method of the Mechanistic-Empirical Pavement Design Guide 

(MEPDG) developed under NCHRP project No. 37-A has brought about a significant challenge to 

pavement designers as well as highway authorities. In terms of data requirements, this method is more 

data hungry compared to the traditional standard axle-based method. Some of the data such as axle load 

spectra has to come from Weigh-In-Motion (WIM) devices, which are found at very few locations. 

Because of this challenge, extrapolation of axle load spectra data from WIM stations to other road 

sections is inevitable. However, prior to that, a set of appropriate criteria, for transferring data from one 

place to the other, needs to be developed. This paper proposes a methodology to be used for transferring 

such data.  

In this study, truck weight data collected from 40 short-term weighing stations in the Province of 

Saskatchewan were analysed and clustered into groups with similar axle load spectra, so that they can be 

compared with groups generated through the proposed methodology. A commodity-based freight 

demand model, previously developed for the Province of Alberta, was blended with vehicle classification 

count data, followed by the formulation of a quantitative method that can be used for transferring data 

from one place to the other. The proposed methodology will enable transportation agencies to transfer 

data from the few existing WIM devices in a situation where they do not have Truck Weight Road 

Groups in place. This will also serve as an important tool required to migrate to the new method of 

pavement design - the MEPDG.  
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1. INTRODUCTION 
 
Traffic loading distribution is one of the major inputs for pavement analysis, design, maintenance and 

management. While much effort has been directed toward the development of more sophisticated and 

accurate design methods, like that of Mechanistic-Empirical Pavement Design Guide (MEPDG) 

developed under NCHRP project No. 1-37A (NCHRP, 2004), less has been devoted to enhancing 

techniques for acquiring more accurate traffic axle loading and distribution data required as an input. The 

MEPDG approach proposes using site-specific Axle Load Spectra (ALS) data for pavement design. By 

comparing it with previous methods, the use of these load spectra provides a more logical way for the 

estimation of the effects of traffic loading on pavement responses and distress, and therefore the optimal 

design of pavement structures. However, according to Haider et al. (2007), the demand for site-specific 

truck and axle-load related data makes the implementation of the MEPDG method a very complicated, 

costly, and labour-intensive undertaking.  

According to a National Cooperative Highway Research Program report (NCHRP, 2004), because of 

these constraints, MEPDG has defined three levels of traffic input data as follows: Level 1 - very good 

knowledge of past and future traffic characteristics. This level requires the gathering and analysis of site-

specific truck volume and loading data. The data measured at or near the site include counting and 

classifying the number of trucks traveling over the roadway by lane and direction and the axle loads for 

each truck class so as to determine the truck traffic for the first year after construction. This level is 

considered the most accurate because it uses actual data measured over or along the project site. Level 2 

- modest knowledge of past and future traffic characteristics. This level requires collection of enough 

truck volume information at a site, in order to estimate it accurately including its seasonal variations. 

However, vehicle weights are not site-specific, but taken from regional Truck Weight Road Groups 

(TWRGs) summaries. Level 3 - poor knowledge of past and future traffic characteristics. In most cases, 

this level starts with Annual Average Daily Truck Traffic (AADTT) or from simple truck counts with no 

site-specific knowledge on the size of the loads carried by trucks traversing the link. At this point, it is 

recommended that regional average or national default values supplied together with the MEPDG 

software MUST be used.  

Most highway agencies only have minimal coverage with Weigh-In-Motion (WIM) stations, and 

gathering enough weight data using portable scales is impractical; therefore,  site-specific traffic loading 

data is typically limited. This forces the MEPDG method to be exercised at either Levels 2 or 3 in most 

cases. According to the Federal Highway Administration (FHWA) (2001), a minimum of 6 WIM stations 

per group is needed in order to develop TWRGs with acceptable homogeneity. The number of TWRGs 

usually ranges from two to fifteen depending on the size of the jurisdiction and the diversity of trucking 
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characteristics. This means that, most of the transportation jurisdictions in the world cannot develop 

TWRGs as per the FHWA recommendations. If they decide to employ the new pavement design method, 

most of the traffic loading data to be used are likely to fall under Level 3. Unfortunately, the accuracy 

offered by Level 3 does not reflect the effort put into developing the MEPDG. At this level, the MEPDG 

approach may produce less optimal pavement structures than the traditional standard axle-load approach.  

To work around the above dilemma, a good way of enhancing the accuracy of traffic loading in-put data 

at Level 2 is required. By looking at the current situation, it is even worse when it comes to Level 3, 

which uses default values supplied by the MEPDG software. A study by Romanoschi et al. (2011) shows 

that there is a high risk associated with the use of Level 3 traffic input data even in the US where the 

software was developed. This means that, a solution for reducing or getting rid of the reliance of Level 3 

is needed.  

According to Jablonski et al. (2010), due to the differences in regulations, Canadian trucks have different 

axle configurations and higher axle loads than those in the US, which means default values developed for 

the US cannot be directly applied in Canada. Further, in Canada, each province has its own weight and 

trucking regulations, which further complicates the matter. To address this non-transferability problem, it 

is recommended that each region develop its own specific factors that relate truck traffic volumes and 

loading distributions. In the same study, Jablonski et al. (2010) showed how Levels 2 (regional data) and 

3 (default parameter values) input data specific to the Province of Manitoba can be compiled. In their 

study, the truck traffic volume and classification data is used in this regard. Axle weight inputs and 

TWRGs, which are more important for the MEPDG design method, were beyond the scope of their 

study. To address this deficiency, this paper presents a method for transferring ALS from the few WIM 

devices available elsewhere, as a substitute for TWRGs.  

2. METHODOLOGY DEVELOPMENT AND DATA USED 

2.1. Overview of the methods and data preparation 

For the ALS data to be transferred, the truck loading and distribution on the section in question has to be 

compared with the data from the available WIM devices so as to choose the one with the most similar 

loading and distribution pattern. Two methodologies, traditional (existing) and quantitative (the one 

proposed in this study), can be used to identify a WIM device with the most similar loading and 

distributions pattern with a road section in question.   

The existing method is only possible for those transportation agencies that have good TWRGs. To those 

agencies with no TWRGs, the proposed methodology in this paper is an appropriate alternative. To use 
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this method, a Commodity-Based Freight Demand Model (CB-FDM) has to be in place so as to be 

blended with Vehicle Classification Counts (VCC). This study presents a brief description on how to 

blend the two and come up with a quantitative method. Development of a CB-FDM is beyond the scope 

of this paper1.  

In order to develop and validate the proposed methodology, the traditional approach, which can also be 

referred to as an intuitive method, was used. Under the traditional method, to allow two sites to be 

compared, at least Short-Term Weight Counts (STWC) for the two sites have to be available. From 

STWC, the ALS for each site is developed, and appropriate techniques, such as Pearson correlation 

analyses (Mai et al., 2013), are used for identifying the site with an axle-loading pattern that is most 

similar to that of the road section in question. 

Pearson correlation analyses generate coefficients, which indicate the degree of similarity between 

objects, in this case, the similarity of ALS between two stations. The generated coefficients range from 

0.00 to 1.00, with the higher coefficients representing the high degree of similarity and vice-versa. 

However, it should be noted that, similar to any monitoring program, STWC data are also NOT 

ubiquitously available, and it is very expensive and challenging to acquire them. To solve the problem, 

this study has developed the alternative proposed method. This approach can be applied when a CB-

FDM and VCC are available, as explained in the subsequent sections. 

Unlike the traditional method where ALS data for the two sites to be compared have to be available, this 

approach does not require such data. The requirements are the net weight of commodities transported 

through the road sections to be compared and the VCC. As demonstrated in the subsequent sections, with 

several WIM devices available, the one that most closely matches the WIM device with the most similar 

ALS to that of the road section of interest is chosen. 

To demonstrate the viability of using this proposed methodology, the vehicle weight count data collected 

at 40 short-term weight count stations in the Province of Saskatchewan were used (here the weight 

information is simply assumed not available). Figure 1 shows the geographical locations of the stations 

where the data were collected. Before starting to develop the ALS for all 40 stations, it was important to 

carry out the truck composition analysis in order to know the dominant truck classes. This helped to 

determine the dominant axle types to be included in developing the ALS. The data depicted in Figure 2 

illustrate that the dominant truck classes are 9 (single trailer, 5 axles), 10 (single trailer, 6+ axles) and 13 

(multi-trailer). The tandem axle was found to be the dominant in these truck classes. The use of the 

                                                   
1 Development of a CB-FDM is presented in a separate paper, which is under review for publication. 
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tandem axle as representative of other axle types is supported by several studies carried out previously 

(Papagiannakis et al., 2006; Mai et al., 2013).  

 

Figure 1: Locations of short-term weight count stations in Saskatchewan
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Figure 2: Truck composition for 40 short-term weight count data sites in Saskatchewan
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Having prepared the ALS, the short-term weight counting stations were clustered into four groups 

depending on their similarity in terms of the loading distribution patterns of tandem axle-loads. Taking 

into consideration that most of the Canadian Provinces have relatively few WIM stations (compared to the 

US), and the data collected did not cover many road functional classes2, it was decided that at least four 

groups could be sufficient for this particular analysis. 

The clustering analysis was completed in XLSTAT (a statistical analysis software) through an 

agglomerative hierarchical clustering method, whereby the ALS were used as input data and the number 

of clusters were pre-specified. The error sum of squares, which is also referred to as Ward's minimum 

variance method was used as a criterion for choosing two clusters to merge.  

With the method used, the software treats the axle-load distribution numbers as vector points, and for each 

pair of objects, it calculates the euclidean distance to form a matrix D, which is also referred to as 

dissimilarity matrix. For n objects (in this case 40), the software initially assumes to have n clusters before 

it starts by searching the dissimilarity matrix D for the closest pair (i, j) of clusters. It then continues by 

replacing clusters i and j by an agglomerated cluster h. The software updates the matrix D to reflect the 

deletion of i and j clusters and to exhibit the revised similarities between h and the remaining clusters. The 

process continues until the last pair is grouped together to form a single cluster containing all objects. The 

process provides several output information including the resulting decision tree diagram (dendrogram) 

shown in Figure 33, the profile plot, which is basically the ALS for the four groups formed, shown in 

Figure 4 and the list of objects for each class. 

  

                                                   
2 The department of transportation in the province of Saskatchewan collects STWC data on a highway if its AADTT 

is more than 80. Lower function classes including collector highways have AADTT below the threshold; as a 
result, do not qualify for the data collection. 

3 The clusters are numbered from left to the right 
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Figure 3: Dendrogram for the ALS clusters for the 40 sites of short-term weight count data in 

Saskatchewan 
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Figure 4: ALS for tandem axle for the four clusters developed using short-term weight count data 

collected in Saskatchewan  
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'If the ratio of the net weights of commodities transported through two road sections is equal to the 

ratio of the truck volumes traversing the same road sections, then the likelihood of the truck axle-

loading patterns on the road sections to be similar or the same is very high'.  

That is: If it is observed that 

 [1] !"
!#
=

%"
%#

  

Then, the two road sections are more likely to have similar truck axle-loading distribution patterns. 

Where W1 and W2 are the net weights of commodities transported through the two road sections 

 N1 and N2 are the truck volumes traversing the two road sections 

Then, it followed testing the methodology by comparing its results with that of the traditional method. The 

net weights of commodities, which are the inputs in Equation [1] were computed using Equation [2]. The 

second term on the right hand side of Equation [2] represents the total weight of empty trucks. 

[2]      &'() = &*+,-- − ∑ &010
23
045   

Where Wnet is the net weight of commodities transported through the road sections of interest 

 Wgross is the total weight of all the trucks (including both the trucks and commodity carried) 

 transported through the road sections of interest 

 Wi is the weight of a class i empty truck as they are shown in Table 14 

 Ni is the number of trucks of class i 

  

                                                   
4 The data used to establish the weights of empty trucks of different classes (in Table 1) were also collected in the 

province of Saskatchewan. 
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Table 1: Weight of empty trucks 

Truck 
Class 

Number of Empty 
Trucks Weighed 

Total Weight 
(lb) 

Average Weight 
per Truck (lb) 

Average Weight per 
Truck (tonnes) - (Wi) 

5 84   723,940  8,618 3.91 

6 325 4,218,544  12,980  5.89 

7 36      616,040  17,112  7.76 

8 87   1,260,130  14,484  6.57 

9 1,130 17,971,578  15,904  7.21 

10 1,432 26,677,409  18,629  8.45 

11 87   1,660,275  19,084  8.66 

12 12      241,185  20,099  9.12 

13 1,116 22,859,022  20,483  9.29 

Note: 1lb = 0.00045359237 tonnes 

A typical/representative site from each group/cluster was identified by re-analyzing each cluster 

separately. This was achieved by forming an auxiliary ALS using the average for each load range (e.g. 

2,000 kg-3,000 kg) for every cluster. Pearson correlation analyses between the auxiliary ALS and the rest 

of the sites (within the group) were done, and the site that showed the highest degree of correlation was 

chosen as the typical/representative site for that particular cluster. 

Using Equation [1], the remaining 36 sites were re-assigned to the clusters. When this hypothesis was 

tested for the first time, it did not yield positive results. The hypothesized Equation was then modified to 

Equation [3] below. 

[3]       6 = 7
!"
!#
−

8",:
8#,:

7 + 7
!"
!#
−

8",<
8#,<

7 + 	…………… . . + 7
!"
!#
−

8",@
8#,@

7 

Where N1,n and N2,n are the truck volumes of class n traversing the road sections 1 and 2, 

 respectively, while W1 and W2 follows the previous definitions. 

Equation [3] yielded relatively convincing results as compared to the original premise. However, it was 

still lacking the consistency when data from one station were tested against data from other stations, one 

with low net weight of commodities and low truck volume, and the other with high net weight of 

commodities and high truck volume. Further examination of the results from the Equation revealed that 

the results could be improved by normalizing the data using the normalizing agent (W1/W2). Applying the 

normalizing agent to Equation [3] yielded Equation [4] below, which gave consistent pairing results.  

Deleted: es
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[4]      6 = A#
A"
∑ BA"

A#
− C",D

C#,D
B'

042 	 

Though Equation [4] gave consistent pairing results, it was still lacking the physical meaning that could be 

easily understood by most pavement engineers or other users. This led to further modification in the 

search for a more easily explainable physical meaning of the equation, which resulted in Equation [5] that 

was also re-arranged further to give Equation [6]. 

[5]      6 = ∑ 71 −
!#
!"
×
8",D
8#,D
7'

042  

6 =GH1 −
&I

1I,0
÷
&2

12,0
H

'

042

 

Where   

&2

12,0
= K2,0 

&I

1I,0
= KI,0 

[6]      6 = ∑ 71 −
L#,D
L",D
7'

042  

Where w1,i is the weight per truck proxy for the truck class i on the road section 1 

 w2,i is the weight per truck proxy for the truck class i on the road section 2 

Finally, Equation [6] was re-written in a general form as shown by Equation [7]. 

  [7]      6 = ∑ 71 −
LM,D
LN,D

7'
042  

Where wq,i is the weight per truck proxy for the truck class i on the road section in question 

 ww,i is the weight per truck proxy for the truck class i on the road section with a WIM device 

While assigning the sites to their clusters, the following issues were observed: first, some stations that 

showed weak correlation in their clusters are likely to be assigned to wrong clusters. However, this was 

not considered a major problem, as the sites seem to have ALS that resembles that of either of the groups. 

Moreover, it should be noted that even by using the traditional method, the Pearson correlation analysis 

might yield slightly different results when compared to the least-sum of squares or other statistical 
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methods. Therefore, slightly different results showed by the developed methodology is also seen when the 

traditional method is used with different statistical techniques for similarity comparison. 

Secondly, the stations that had an ‘irregular distribution’5 of trucks, such that one of the classes 9, 10 or 13 

dominate, are also likely to be assigned to incorrect classes. It was found that, when a road section in 

question has such an irregular distribution' of truck classes 9, 10 and 13, this method might not give the 

proper results. However, it is possible that roads exhibiting such characteristics may be transporting 

special commodities, for instance, roads servicing the forestry industry for carrying logs or roads heading 

to places servicing agricultural activities, etc. Apart from the fact that these places are serviced by a 

particular class of trucks depending on the commodity to be carried, the trucks are either going there 

empty and returning loaded or vice-versa. It is recommended that such roads be identified and treated 

based on local experience or engineering judgement.  

It should be noted that the vehicle classes with no significant number of vehicles should not be included in 

the computation process as they are likely to cause instability among the pairs being compared. In testing 

the viability of using the method, only trucks of classes 9, 10 and 13, which usually comprises 85-90% of 

all trucks, were used in the computation of the difference 'D'. 

The parameters, Wq,i and Ww,i as defined before are found through a CB-FDM. Under the commodity-

based modeling approach, a FDM development starts by converting commodity monetary values into 

tonnages, and then tonnages into numbers of trucks and assigning them onto the road network. Assigning 

trucks onto the road network is necessary for model calibration and validation. In this case, once the 

model is well calibrated and validated, the commodity weights (in tonnes) are assigned onto the road 

network. The product of the weight assignment onto the road network gives the parameters Wq,i and Ww,i, 

which are required for computing the weight per truck proxies needed for one to execute the method (see 

Equation [7]). It is authors' opinion that other methods for acquiring the net weight of commodities 

transported along different road sections such as short-term weight counting are comparatively expensive.  

However, it should be noted that a FDM used to estimate Wq,i and Ww,i may contain some errors that can 

significantly affect the results - the computations of weight per truck proxies. Whenever applicable, it is 

recommended that a ratio of the observed AADTT to the modeled AADTT (AADTTobserved/AADTTmodel) 

should be used to adjust the values of Wq,i and Ww,i estimated through the model. 

                                                   
5 An 'irregular distribution' means, by considering the three truck classes 9, 10 and 13, if any of these classes 

contributes more than 66% of the total, then the road section is considered to have an 'irregular distribution' of 
truck classes 9, 10 and 13. 
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3. VALIDATION OF THE METHODOLOGY 

After the methodology was developed, it was necessary to test it on the ground for validation purposes. 

Despite the problem of data availability in Alberta, the six WIM stations available in the area were used. 

This section presents briefly how the validation exercise was carried out, the results as well as the 

discussion of the results. 

3.1. Data preparation 

Using the CB-FDM that was developed in a separate study, and vehicle classification counts, the only step 

required was to obtain the net weights of commodities transported along the road network. Under the 

commodity-based freight demand modeling approach, truck assignment is preceded by truck trips 

estimation, which involves converting commodity tonnages into numbers of trucks. So, for this exercise, 

the data obtained after the mode split step, which is the weight of commodities (in tonnes), were assigned 

onto the road network without converting them into numbers of trucks. However, it should be noted that 

prior to this exercise, the model has to be fully developed to the point where traffic assignment is complete 

to allow for calibration and validation. 

Following the general practice for regional inter-zonal freight modeling, the All-or-Nothing traffic 

assignment technique was used to assign commodity tonnages onto the road network. It should also be 

noted that the same assignment technique that is used to assign trucks onto the road network during FDM 

development should be used for the sake of avoiding re-calibration. The product of the weight assignment 

exercise is the net weights of commodities transported through the road sections of interest. The net 

weights of commodities are used together with VCC for computing the weight per truck proxies required 

in Equation [7] (see page 12). The other data that are required from WIM devices were taken from the six 

WIM stations available in Alberta. The geographical locations of WIM stations in Alberta can be seen in 

Figure 5. The ALS similarities from the WIM stations were created using the traditional method so as to 

be compared with that of the methodology. Data from the CB-FDM were treated as per the procedures 

discussed under the Section 2- methodology development. Parameters such as vehicle classification data 

(Ni), weight per truck proxies (wi) for classes 9, 10 and 13 that were seen to be dominant were processed. 

The results from the traditional method and the developed methodology were compared. 
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Figure 5: Geographical locations of the six WIM stations in Alberta 

             Source: Farkhideh (2012) 

Before proceeding with the analysis, it was necessary to know the vehicle composition at each WIM 

station to assess the distribution of truck-classes 9, 10 and 13. Table 2 and Figure 6 show the composition 

of trucks at the WIM stations. From Table 2, it is noted that the dominant truck classes at all six WIM 

stations are 5, 9, 10 and 13, which account for about 90% or more. Similar to findings from previous 

studies , the tandem axle is used to represent other axles in evaluating ALS similarities among different 

road sections (Papagiannakis et al., 2006; Mai et al., 2013). For consistency, truck-class 5 was not 

considered in the computation of weight per truck proxies since it does not have any tandem axle. 

Upon examining the trucks composition, it was revealed that at some stations such as Edson and 

Villeneuve, which are on highways  #16 and #44 respectively, truck class 11 does not appear at all. It is 

also worthy to note that unlike the other stations, truck class 5 is the most dominant group at the Leduc 

(LED) WIM station, which is located on the old highway #2A. Another observation is that at the 
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Villeneuve WIM station (VIL), the number of class 9 trucks is about one-third that of class 10, and also 

less than that of class 5, which is a bit unusual.  

Table 2: Vehicle composition at WIM stations in Alberta 

CLASSES\STATION 
Edson 
(EDS) 

Fort 
MacLeod 

(FTM) 

Leduc - 
on #2A 
(LED) 

Leduc - 
on #2 
(LEV) 

Red 
Deer 

(RDR) 
Villeneuve 

(VIL) 
4 53 32 25 145 218 28 
5 349 172 113 588 929 189 
6 57 35 30 72 186 112 
7 23 5 4 13 25 11 
8 11 17 10 37 48 33 
9 353 322 74 962 1156 149 

10 426 238 72 932 1027 504 
11 0 1 1 2 4 0 
12 6 5 1 17 17 1 
13 579 131 58 670 685 397 

TOTAL 1857 958 387 3438 4295 1424 
 
 

 
Figure 6: Vehicle composition at 6 WIM stations in Alberta 

3.2. Results of the validation process 

In a similar manner to that used for preparing the ALS for the 40 stations in Saskatchewan, the ALS data 

from all six WIM stations were prepared for the tandem axle as shown in Figure 7. As expected, this 
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resulted in huge volumes of data that were not straightforward to analyse for identifying similarity among 

the WIM stations. In order to address this difficulty, Pearson's correlation coefficients (rij) were used to 

study the similarity between the above WIM sites, as shown in Table 3. 

A value of the coefficient rij close to 1.00 suggests a high degree of similarity between a pair of WIM 

stations, and a low rij value suggests a significant difference exists between the two. For instance, ALS for 

WIM stations at EDS and RDR are the most correlated with a correlation coefficient of 0.9687, followed 

by WIM stations at RDR and FTM with a coefficient of 0.9509. The ALS of WIM stations at VIL and 

LED, with a coefficient of 0.5417, are the least correlated among the sites presented in Table 3. 

 

  
Figure 7: ALS for tandem axle at 6 WIM stations in Alberta 

Table 3: Pearson correlation coefficients for similarity ALS for 6 WIM stations in Alberta 

Sites EDS FTM LED LEV RDR VIL 
EDS   0.9340 0.5883 0.9120 0.9687 0.7278 
FTM 0.9340   0.7269 0.8950 0.9509 0.7960 
LED 0.5883 0.7269   0.6364 0.6710 0.5417 
LEV 0.9120 0.8950 0.6364   0.9199 0.8570 
RDR 0.9687 0.9509 0.6710 0.9199   0.7478 
VIL 0.7278 0.7960 0.5417 0.8570 0.7478   

  

The results from Table 3 were re-examined to arrange the WIM stations in the order of the similarity as 

shown in Table 4. This was very important as it allows for an easy comparison of the similarity generated 

using the ALS data from the WIM stations and the one generated by the developed methodology for 

identifying road sections with similar truck axle-loading pattern. 
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The next step was to compute differences - "D" using Equation [7]. This equation requires the weight per 

truck proxies and truck volumes for the truck-classes to be considered in the analysis - for this case, 

classes 9, 10 and 13. These parameters were computed as presented in Table 5.  

Table 4: WIM similarities for six WIM stations in Alberta using Pearson correlation analysis of ALS 

Site Similarity Ranks 
  1 2 3 4 5 
EDS RDR FTM LEV VIL LED 
FTM RDR EDS LEV VIL LED 
LED FTM RDR LEV EDS VIL 
LEV RDR EDS FTM VIL LED 
RDR EDS FTM LEV VIL LED 
VIL LEV FTM RDR EDS LED 

Table 5: Truck volumes and weight per truck proxies 

 Truck 
Classes 

WIM Stations 
 EDS FTM LED LEV RDR VIL 

Truck Volumes 
9 353 322 74 962 1156 149 
10 426 238 72 932 1027 504 
13 579 131 58 670 685 397 

Net Daily Commodity Weight 
(Tonnes)* 37,712 19,605 4,618 77,757 85,323 33,714 

Weight Per Truck 
Proxies 

9 107 61 62 81 74 227 
10 88 82 64 83 83 67 
13 65 149 80 116 125 85 

* These values were extracted from the developed CB-FDM 

 
The truck volumes and weight per truck proxies shown in Table 5 were used to compute the differences 

"D" as presented in Table 6. The similarity results from the difference "D" are presented in Table 7.  
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Table 6: Difference "D" calculated using Equation 7-6 

Sites EDS FTM LED LEV RDR VIL 
EDS  1.4384 2.6368 1.0358 1.1155 1.6848 
FTM 1.8692  2.7679 0.7130 0.6245 1.7996 
LED 1.6763 1.5229  1.6723 1.4814 2.2650 
LEV 1.2869 0.6989 3.0774  0.5846 1.3056 
RDR 1.3884 0.5798 2.1018 0.4971  1.6234 
VIL 3.2538 4.6403 4.9671 3.1180 4.1902  

Table 7: WIM similarities for six WIM stations in Alberta using the difference "D" from Equation 7 

Site 
Similarity Ranks 

1 2 3 4 5 
EDS LEV RDR FTM VIL LED 
FTM RDR LEV VIL EDS LED 
LED RDR FTM LEV EDS VIL 
LEV RDR FTM EDS VIL LED 
RDR LEV FTM EDS VIL LED 
VIL LEV EDS RDR FTM LED 

 

3.3. Discussion of the validation results 

The WIM stations at Edson, Fort MacLeod, Leduc (on highway #2) and Red Deer are strongly correlated 

to the extent that they could be grouped under the same cluster. Interestingly, despite this strong 

correlation, the results from the developed methodology, to some extent could allow them to be arranged 

according to their similarity in the same order as that developed using the traditional method with data 

from WIM stations (refer to Tables 7-6 and 7-9). This occurred with the WIM stations at Fort MacLeod 

and Leduc (LEV). For the stations at Red Deer and Edson, because of the strong correlation, the other 

three stations could exchange the order of similarities. However, as explained earlier, even by using the 

traditional method, the Pearson correlation analysis might yield slightly different similarity order when 

compared to the least-sum of squares or other statistical methods. Therefore, a slightly different 

arrangement of the order of similarity shown by the developed methodology can also be seen when the 

traditional method is performed with different statistical techniques. 

In addition, the weak correlation on Villeneuve and Leduc (LED) shown by Pearson correlation using a 

traditional method was also confirmed, when the difference - "D" was calculated using the developed 

methodology. This also shows the strength and credibility of the developed methodology. 
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From the above analyses, it clearly shows that the developed methodology for identifying road sections 

with similar truck loading patterns can provide credible results without requiring collection of axle loading 

data on the road sections of interest. It should be noted that in the absence of TWRGs, the only transparent 

way of deciding where to borrow the ALS is to compare the ALS data on the road section of interest, 

which is developed using short-term weight count data with that from the available WIM stations. With 

this methodology, the only requirements are a CB-FDM and VCC.  

4. CONCLUSIONS AND RECOMMENDATIONS 

One of the major problems inhibiting most transportation authorities from migrating from the traditional 

axle-based pavement design method to MEPDG is the lack of required truck ALS data. To acquire these 

data, extrapolating information from an existing WIM station with similar loading and distribution pattern 

is required given the limited number of installations. However, the problem has been how to identify a 

WIM device located along a road section with similar axle loading and distribution patterns. In this study, 

a quantitative methodology, which is capable of identifying road sections with similar ALS has been 

developed. The methodology serves as a proxy to having TWRGs in place. The requirement of the method 

are VCC at the study sites under consideration and a CB-FDM for supplying net weight of commodities 

transported along the study sections. The methodology is expected to serve as an alternative to 

transportation jurisdictions that do not have TWRGs in place, when adopting the new MEPDG. The 

methodology will also alleviate the problem of using default design data supplied with the software in a 

situation where there is no WIM data in place. Currently, most transportation authorities have not been 

able to develop a scientific method for transferring data from a few WIM devices available. The very few 

available WIM stations are not enough to develop credible TWRGs as per the FHWA guidelines. Prior to 

this study, it appears that the development of TWRGs and assigning road segments into the TWRGs is the 

only scientific way used for transferring ALS data from the WIM stations. 
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