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Traffic count data are useful for many purposes, but often not available for
significant portions of road networks. It would be prohibitive to cover all
roads with traditional sensor-based traffic monitoring system, particu-
larly for rural, low-class roads. In cases where traffic volumes are needed
but unavailable, travel demand models (TDMs) can be used to estimate
such information. A literature review indicates that research work for
estimating traffic volumes for low-class roads using TDM is scarce. The
majority of previous research used traffic count data-based regressions.
The problem of such an approach is that it relies on available traffic counts
to develop, calibrate, and validate regression models. Nevertheless, few or
no traffic counts are collected on low-class roads, and therefore make it
inapplicable. This study implements TDMs for two regions in the province
of New Brunswick, Canada to estimate traffic volumes for low-class roads.
Geographical Information System-based TDMs using census data and
Institute of Transportation Engineers (ITE) Quick Response Method
produce forecasted traffic for a significant portion of road network
previously without any traffic information and limit the average estima-
tion errors for low-class roads to less than 40%. Available traffic data were
increased by 45% in York County and 144% in the Beresford area. The
traffic estimation errors are comparable to or better than those reported in
the literature, and the forecast traffic volumes provide a solid foundation
for identifying high-volume road segments and prioritizing funding. Study
results clearly show TDM is a practical, useful, cost-effective way for
estimating traffic parameters on low-class roads.
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Introduction

Like many others, the traffic monitoring program in the Canadian Province

of New Brunswick has traditionally focused on the higher functional class

highway system (collector and above). There are limited traffic volume

statistics available for low-class local highways. Low-class highways account

for the majority (65% or more) of system kilometers in the province.

Although it is not practical to establish regular traffic count sites along the

lower class roads, it is important to establish traffic estimates or traffic

volume ranges for these highway segments especially in the context of the

asset management initiative.

An alternative to the installation of new traffic counters on low-class

roads is to estimate traffic volumes via a travel demand model (TDM).

Development information and socioeconomic data could be used in

conjunction with established trip generation techniques to estimate travel

demand among different zones in a region. The travel demand is assigned to

different routes, which in turn is used to estimate traffic volumes for highway

segments.

Our literature review indicates that there is limited research of applying

TDMs for estimating traffic volume on low-class roads. Highway agencies

usually collect very limited data on low-class roads. Some studies use

regression techniques to estimate travel demand based on the socioeconomic

characteristics of adjacent land use and the distance to higher functional

class roads (e.g. arterials), and they show varying degrees of success. A few

studies investigated the possibility of using TDMs to estimate traffic

volumes, but most have focused on higher functional classes. This paper

reports the study results of using TDM to estimate traffic volumes on low-

class roads in the Province of New Brunswick, Canada.

Literature review

This section details the issues related to traffic volume estimation on low-

class and low-volume roads. Traffic data collection practices for low-volume/

low-class roads are briefly reviewed. Various studies were profiled to review

the state-of-the-art in the areas of traffic estimation for these roads.

Traffic data collection practices for low-volume/low-class roads

Traffic count data are extremely useful in many applications, particularly in

asset management. Most jurisdictions assign traffic volumes to roads based

on sample counts from adjacent areas or those for a particular road class.

Actual count data are often not available for large portions of the network.

In the case of low-class/low-volume roads, traffic count data are almost non-

existent (Seaver et al. 2000).
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A literature review of traffic count collection practice in the USA,

Canada, and Australia indicates that sensor-based traffic monitoring

activities on low-class roads in general are very limited (Hanson 2007) and

that low-class road traffic counting practices vary widely among highway

agencies. How effectively these roads are managed depends on two factors:

the current state of the asset management program and the amount of
funding available. This is largely constrained by available resources.

The practitioners call for obtaining traffic information for low-class roads

via another cheaper and more efficient way (NBDOT 2006). This study tries

to use TDM for estimating traffic along these roads.

Estimating traffic summary statistics for low-class roads with traffic count
data-based regression

Most annual average daily traffic (AADT) estimates in research are made

using a short-term traffic count and either a factor method or a more

advanced method, such as neural networks (Sharma et al. 2000). Literature

on estimating AADT for roads that do not have traffic counts is limited

(Zhao and Chung 2001). In most cases they are low-class roads and thus not

included in traffic counting programs. The few attempts that have been made

use traffic count data-based regression techniques show varying degrees of

success. They are outlined as follows.
Seaver et al. (2000) was the only study that looked at estimating traffic

volume specifically on rural local roads. The study was based on very

detailed data; various combinations of 45 variables (typically 7�8 for each

stratum) were used in the analysis. Initial results were not very good for rural

roads within or outside metropolitan statistical areas (MSAs), indicating

that additional subgroups may be needed within each road type. Regression

clustering on rural paved roads outside MSAs yielded three strata. Models

for each one had R2 values of at least 0.90 and a predictive R2 of at least
0.74. The regression models for the two strata within MSAs had an R2 of

0.80�0.93 and a predictive R2 of 0.57�0.61. The study concluded that it is

possible to mathematically model traffic volumes on low-volume roads.

However, their study aimed to estimate traffic volume for certain road

groups or subgroups. It did not address the volume variations within a group

and thus not useful from asset management point of view. In addition, no

estimation errors were reported and only R2 were used as indications of

modeling accuracy.
A study at Purdue University, Indiana, developed a multiple regression

method using data from 89 count stations to predict AADTs on county

roads in Indiana. The four predictors used were: county population, location

type (urban/rural), a dummy variable for indicating whether an easy access

to state roads exists, and total arterial mileage in the county. An R2 of 0.75

was achieved. The AADT prediction errors range from 1.56% to about 35%
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(Mohamed et al. 1998). Close examination to the final model from the study

indicates that local roads within a county would in general have very similar

estimated traffic. It is clear that the study cannot address volume variations

of local roads within same counties.

Zhao and Chung’s study (2001) also used the geographic area of

Broward County, Florida. The following variables were used in regression
analysis: function classification, number of lanes, direct access from a count

station to expressway access points, accessibility to regional employment in

Broward County, employment in a variable-sized buffer around a count

station, and population in a variable-sized buffer in a count station. Four

regression models were used with R2 values ranging from 0.66 to 0.82. The

model with the highest R2 used all variables except the population buffer.

For the four methods applied in their study, 73�79% of study sites have a

prediction error of less than 40%. The maximum estimation errors for the
four regressions are all more than 150%.

A regression model was developed for non-state roads in Broward

County, Florida, using the following predictors: function classification,

number of lanes, area type, auto ownership, presence of non-state roads

nearby, and service employment. The model has an adjusted R2 of 0.5961

with a minimum/maximum prediction error of 1.31%/57% (Xia et al. 1999).

The low estimation errors in their study can be contributed to the generally

higher traffic volumes (more than 3000 vehicles/day) on these roads as they
are within the urban area.

Eom et al. (2006) applied a spatial regression model to estimate AADT

for roads in Wake County, North Carolina. The study used observed traffic

counts from 200 of the County’s 1200 monitoring stations to estimate traffic

volumes. The estimates were compared to the remaining stations that were

not used in the model. Traffic was assigned based on the observed values

from the closest monitoring stations and several socioeconomic factors. This

model worked fairly well in an urban setting where the density of counting
stations was high; however it showed mediocre performance in more rural

areas. An overall R2 value of 0.6613 was obtained. Some scatter diagrams

were used to present estimation accuracy and no prediction errors were

reported.

In summary, previous research used traffic count-based regressions for

estimating traffic volumes for various types of road (Xia et al. 1999, Zhao

and Chung 2001, Eom et al. 2006) or road groups (Mohamed et al. 1998,

Seaver et al. 2000). Most of them focused on high-class roads, as traffic
counts are usually not available for low-class roads in general. Research for

low-class roads (Mohamed et al. 1998, Seaver et al. 2000) was limited to road

groups, rather than individual road segments, which makes it not useful from

asset management and operation point of view. Regression approaches also

fall short in that some data has to be prepared for individual road sites (Xia

et al. 1999, Zhao and Chung 2001, Eom et al. 2006). The independent
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variables selected in the final models may not be readily available. They may

only be obtained by processing data from a Geographical Information

System (GIS) (such as ‘Direct access to state roads or not’ and ‘Total service

employment within a certain distance of a count station’) or combine data

from various sources (e.g. those containing ‘Number of lanes’ or ‘Road

functional class’).

Travel demand modeling for estimating low-class road traffic

Literature on using a TDM to estimate low-class road traffic is scarce. Blume

et al. (2005) implemented a model that used census data and sample counts

to estimate vehicle miles traveled (VMT) on urban local roads, rural local

roads, and rural minor collectors. Sample counts were taken for eight strata

and an AADT based on median traffic volumes was estimated for each
group. The estimated AADT was assigned to all the roads in the respective

strata and VMT was calculated. The study identified the required number of

sample counts to reach certain accuracy levels, ranging from 158 for 70�15

(15% error at the 70th percentile), to 881 for 95�10. This study did not

address the issue of estimating traffic volumes for individual road links.

Many US jurisdictions have implemented statewide TDMs. Horowitz

and Farmer (1999) performed a critical review of the statewide travel

forecasting methods used in practice by US Departments of Transportation
(DOTs). The model used by Michigan is considered to be an indicator of the

‘state of the practice.’ It is a three-step model that omits the mode choice

portion of the traditional four-step process, and retains the characteristics of

an urban model. The model forecasts trips between 2392 Transportation

Analysis Zones; 2307 of which are within Michigan and 85 of which

represent the other 47 contiguous states, Canada, and Mexico. Most of the

modeling work was done using the TransCAD and its built-in modeling

tools.
Michigan’s statewide TDM may be the most advanced but it still falls

short in addressing the issue of low-class/low-volume roads. Roads classified

as collector or above are generally included in the network, with local roads

occasionally included for the purpose of connectivity. The vast majority of

local roads are omitted (Michigan DOT 2007).

Case studies

Two areas in the Province of New Brunswick are selected for this study,

which are York County and Beresford Census Consolidated Subdivision

(CCS), as shown in Figure 1. The York County is in the middle of the

province and encompasses the provincial capital � Fredericton. The

Beresford CCS is located in the northeast region of the province and it is

a popular tour area.
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The New Brunswick Department of Transportation (NBDOT) manages

a total of 1420 km of roads in York County, of which 643 km (45%) are

included in the traffic counting program (NBDOT 2006). The AADT on

each of these roads is derived from 55 locations throughout the county using

either short-term counts or data from permanent count sites. All numbered

roads (freeways, arterials, collectors, and local numbered) are covered by the

traffic counting program. Local named roads represent 345 km of the

provincial road network in York County. This represents 24% of the total

York County road network and 35% of all paved roads. Except for one small

segment, local named roads are not included in the traffic counting program.

Figure 2(a) shows the York County dissemination areas (DAs) and road

network with labeled highways. Arterial highways are numbered 2�99.

Collector highways are numbered 100�199. Local numbered highways are

numbered 200�. Arterial highways are highlighted in dark red. Collector

highways are highlighted in purple. Local numbered highways are repre-

sented by a red dashed line. All other parts of the road network, including

local named roads are shown in grey. Roads across the province are all

numbered using this practice, including the Beresford area.

In order to examine the TDM at a smaller scale, the analysis area was

reduced to the CCS level. The CCS of Beresford encompasses an area for

which available traffic counts could be intuitively linked to local traffic, i.e. it

encompasses a central business district (CBD) and the entire urban

influencing area. There are a total of 224 km of road in the Beresford

area. The NBDOT manages 178 km of these roads. Traffic count data were

available for the one arterial, one collector, and two local numbered roads.

This represented 45 km (25%) of the provincial road network which

comprised one permanent count site and two short-term count sites on

the arterial highway; two short-term count sites on the collector; and one

Figure 1. Geographic location of York County and Beresford CCS.
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short-term count site on each of the local numbered roads. Figure 2(b)

shows the Beresford area road network and DAs. Numbered highways

include arterial highway 11, collector highway 134, and local numbered

highways 315 and 322, and they are labeled and represented with the same

color-coding scheme as the York County.

Study data and method

The TDM was developed using TransCAD’s built-in four-step model and

omitting the mode choice step. Three GIS road networks: national network,

provincial network, and the network covered by the provincial traffic

counting program, were used at the various points of this study. The

smallest census units, DAs, were directly used as traffic analysis zones

(TAZs) to take advantage of readily available socioeconomic data from the

2000 census. The Quick Response Method (QRM) (NCHRP 1978,

TransCAD 2005) was used for trip generation, trip attraction, and trip

balancing. The following section details this process.

TransCAD offers three methods of trip production: cross-classification,

regression, and discrete choice. The QRM uses a cross-classification trip-rate

table with parameters from the National Cooperative Highway Research

Figure 2. (a) York County and (b) Beresford area road network.
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Program (NCHRP) Report 187 (NCHRP 1978). The table includes trip-

rates for three trip purposes: home-based work (HBW), home-based non-

work (HBNW), and non-home-based (NHB). Data required for this method

included the total number of households (HH) in the zone and the average

income per household for the zone, which were obtained from the census

data. Since the trip rate table in NCHRP 187 is based on 1970 US dollars
(US$), an inflation index was applied. Using the Consumer Price Index to

calculate the inflation, a factor of 4.69 was applied to the 1978 numbers.

The number of trips generated per household is a fundamental

parameter and is inherently subject to high variation. Miller et al. (2006)

acknowledged this and performed a study to investigate discrepancies

between residential trip generation rates in the context of borrowing national

average rates (NCHRP rates) for local application. The study concluded that

there are no significant differences in mean rates attributable to the use of an
average value instead of a site-specific value, so these rates were directly

applied in this study.

The QRM uses an attraction model from NCHRP Report 187 (NCHRP

1978). The model is a regression equation that estimates the number of

person trips attracted to a zone based on the number of dwelling units in a

zone and the zone’s work activity. Data required for this method included

the total number of HH in the zone, retail employment in the zone, and non-

retail employment in the zone. Balancing productions and attractions was
done by holding the productions constant (recommended).

The gravity model was used to distribute trips among the zones. In order

to do this, an impedance matrix needed to be created. The distance between

centroids was used to fill the matrix. The value in the diagonal cells of the

matrix (i.e. Zone 1 to Zone 1) was manually changed from 0 to 9999 to force

trips to be distributed to other zones. The friction factor matrix was created

using this impedance matrix. Person trips were converted to vehicle trips

using the default recommended average occupancy value of 1.62 persons per
vehicle (NCHRP 1978). Then an impedance function was used to distribute

trips among zones. This study used a Gamma function with the parameters

shown below:

f(dij)�a �d�b
ij �e�c(dij):a�0; c]0 (1)

where f(dij) is the friction factor between each ij pair of zones; dij is the

impedance between each i, j pair of zones; a, b, c are calibrated parameters.

The parameters recommended in the NCHRP 365 � ‘Travel Estimation

Techniques for Urban Planning’ (NCHRP 1998) were used in this study.

Although some of the study areas were considered rural, the overall traffic

flow was still expected to follow the urban model as most areas are within

the influencing areas of urban centers, so it was felt that these parameters
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were appropriate in this context. The result of this step was an O�D matrix

for all zone-to-zone trips for each type of trip: HBW, HBNW, and NHB.

The final step was to assign each trip to the road network and generate

traffic volumes. Several formatting steps were required before this could be

achieved. These included cross-referencing the centroid nodes to the nodes

they represent in the road network; indexing the O�D matrices with the road

network nodes (rather than centroids nodes); and replacing links in the road

network that had a length of zero with a non-zero value.

The STOCH method (Sheffi 1985) was used to perform the traffic

assignment for the QRM. This method distributes trips between O�D pairs

using the shortest path, but also assigns a portion of the trips to other

‘reasonable’ routes based on probabilities calculated by a logit route choice

model. This method was chosen over the all-or-nothing method in order to

increase the range of roads on the network that would be assigned traffic.

Although typically used to model congestion, an equilibrium method (Sheffi

1985, TransCAD 2005) was also implemented in an attempt to improve on

the results obtained from the stochastic assignment. The observed NBDOT

traffic volumes were manually entered as capacity constraints on the

corresponding road segments in the network. Traffic assignment was

performed for each trip type resulting in total traffic volumes on each link

for each trip type. The sum of traffic volumes for all trip types represents the

total estimated daily traffic volume on each link, which in turn serves as

AADT estimate of the link.

Study results and discussion

York county study

Traffic volumes were estimated for 935 km (66%) of the 1420 km of

provincial roads in the county. The NBDOT currently has 645 km (45%) of

the road network covered by the traffic counting program. Traffic volumes

were estimated for 290 km of road that previously did not have any traffic

count data available. This represented an increase in available data of 45%

compared to the current traffic count data. Traffic volumes were estimated

for 183 km (52%) of local named provincial roads.

There are four arterial highways in the York County. Traffic counts from

the hardcopy map provided by the NBDOT were used to compare with the

traffic volumes estimated by the TDM. Nine counts were used in the

comparison for the arterial road segments. The estimates for the arterial

highways had a fairly low average error. The average error was 9% with only

one of the nine comparisons made had an error greater than 10%. Since

these trunk roads are expected to carry the majority of the traffic throughout

the zone, the low percentage error indicates that the trip productions and

attractions being modeled are reasonably well. There was no clear tendency
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toward over or underestimating traffic. A regression analysis was performed

resulting in an R2 value of 0.9807, which emphasizes that there is a strong

linear relationship between the estimated and observed values.

There are six collector highways in the county. Sixteen traffic counts were

used to compare with the estimated collector volumes. Collector volumes

were overestimated on all but two cases, which indicates that the traffic did
not get assigned appropriately at this level. Average error for the class was

44% with a 90% percentile error of 104%. Low-volume roads tended to have

the worst estimates, while high-volume estimates had a relatively low error.

There are 11 local numbered highways in the county. Ten observed traffic

counts were used to compare with the estimated traffic volumes on local

numbered roads. It was found that the estimates for local numbered roads

were all overestimated and had the highest average error of all the road

classes (174%). The R2 value for local numbered traffic estimations was
0.5414 which indicates a moderately weak correlation between observed and

estimated values.

In all cases the volumes were significantly overestimated with errors

ranging from 11% to over 700%. This reinforces the indication that traffic

did not get widely assigned to the road network; only 65% of roads were

assigned traffic and thus traffic volumes on these roads were significantly

overestimated.

Trip assignment was initially performed with an ‘all or nothing’ type
assignment. This means that the majority of travel between zone centroids

will be assigned to shortest paths regardless of the number of centroid

connectors. There are two possible solutions to this problem. The number of

generating sites within each TAZ could be increased or a different assign-

ment scheme could be developed. Although both solutions increase the

amount of manual input to the model, which may make large-scale

implementation impractical, changing the trip assignment method is likely

the easier solution.
To test this theory, the assignment method was changed to ‘Stochastic

User Equilibrium’ (SUE), which incorporates capacity constraints into the

trip assignment. The observed values of collector traffic were manually

added to the corresponding road segments as the capacity in the road

network file. The traffic assignment was performed and the estimates on the

local numbered roads were again compared with the observed values.

Generally traffic volumes were still largely overestimated, but the

implementation of a user equilibrium traffic assignment improved the
overall predictions on local numbered roads. The average error was reduced

by about 14% and the 90th percentile error was reduced by 59%. The results

from the regression analysis were also improved. The R2 value increased to

0.6965, which indicates a stronger correlation between the estimated and

observed values. The Sum of Squared Error (SSE) for the TDM output was

reduced by 97% from 25,424,339 to 861,461 based on the adjusted estimates.
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The fairly large R2 indicates that regression could be used to remove the

consistent overestimation bias and improve the accuracy of local road

estimates from the TDM. Four traffic counts were removed so they could be

used for model validation and the regression analysis was performed on the

remaining six, which produced the following equation:

Observed�0:4375�Output from TDM�67:237 (2)

The average error for the test group estimates was reduced by 115% to

38.6%. The 50th, 75th, and 90th percentile errors were all reduced by over

120%. These results clearly show that using regression to modify the TDM

estimates on local roads without traffic data can increase the accuracy and

reduce the overall bias in the estimations on these roads.
One explanation for the large overestimation on local roads could be that

the trip distribution was not done effectively. Trips generated in a zone were

forced to end in another zone, meaning there was no internal zone traffic.

While this was not a problem in urban areas where the DAs were small, in

rural communities where DAs were larger, inter-zone travel was over-

represented. Traffic was then distributed to areas with large attractions,

mainly Fredericton’s business districts. Since a large portion of the greater

Fredericton area in the east of the study area was not included in the model
(e.g. the town of Oromocto), there was a surplus of trip attractions generated

in Fredericton that would normally have been paired with productions from

the missing area. In order to keep productions and attractions balanced,

productions from the other parts of the zone were paired with the surplus

attractions. Combine this with the apparent over-representation of rural

inter-zone trips, and an overestimation of traffic volumes on local roads can

be expected. Therefore, the study results indicate that selection of an

appropriate study boundary which includes the entire influencing areas of
adjacent cities or towns is critical.

Beresford CCS study

The above analysis to York County indicates that the analysis zone should

be limited in an area for which the majority of the traffic in the region was

generated within the zone. Therefore, another area � the Beresford CCS is

chosen for further study, which is located on the waterfront of the Baie des

Chaleur in the northeast part of the province. The TDM implemented in the
study produced traffic volumes for 110 km (62%) of the provincial road

network in the Beresford CCS. This represents an increase in available data

of 65 km (144%) compared to the existing traffic count data.

The main road, which services the CBD, is collector Highway 134, which

runs north�south along the waterfront. The population density is highest

close to the water on the east side of the zone and becomes progressively
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lower heading west. Arterial Highway 11 runs through the zone parallel to

Highway 134. On both highways, observed traffic volumes on sections to the

north and south of the zone were significantly lower than traffic volumes in

the center of the zone, particularly on the collector highway, where the traffic

volume went from 1240 vehicles per day at just north of the zone to 12,400

vehicles per day in the CBD. This indicates that the majority of traffic is
being generated within the zone.

In order to compare the observed traffic counts with the estimated traffic

volumes, it was necessary to account for through trips in this case due to the

fact that both Highway 11 and Highway 134 traverse the entire study area.

Since observed traffic volumes in the north of the zone were lower than

volumes in the south of the zone, the observed volumes in the north of the

zone were taken as a better representation of through traffic. On Highway

134, the observed value of 1240 vehicles per day on the north section was
used as the through traffic value. On Highway 11, the observed value of 3510

vehicles per day from the permanent count station in the north of the study

area just before the first interchange was used as the through traffic value.

The observed traffic volumes at the two short-term count sites on

Highway 11 (arterial) were 4500 and 7060 vehicles per day, respectively. With

through traffic removed, the expected volumes on these two segments were

990 and 3550. The traffic volumes estimated using the TDM were 1032 and

3132 vehicles per day. In the first case traffic was overestimated with an error
of 4%; in the second case traffic was underestimated with an error of 12%.

These results clearly show the TDM performed reasonably well at the

arterial level.

The observed traffic volumes at the two short-term count sites on

Highway 134 (collector) were 9430 and 12,400 vehicles per day, respectively.

With through traffic removed, the expected volumes on these two segments

were 8190 and 11,160 vehicles per day, respectively. The traffic volumes

estimated using the TDM were 6290 and 9925 vehicles per day, respectively.
Volumes in both cases were underestimated with respective errors of 23%

and 11%, respectively. This may indicate that through trips were slightly

underestimated at both locations. It is reasonable to speculate that

additional traffic was generated between the edge of the analysis zone and

the location of the base counts used to estimate through traffic.

There are two local numbered highways in the zone: Highways 315 and

322, both running north�south. Highway 322 branches off 315, runs parallel,

and then rejoins 315, as shown in Figure 2(b). The short-term count sites were
both located at the southern juncture of the two highways. This juncture was

located just south of the study area. The observed traffic volumes were 1400

vehicles per day for Highway 322 and 2660 vehicles per day for Highway 315,

respectively. Since these were local roads, no through traffic modifier was

applied. The traffic volumes estimated using the TDM were 1951 vehicles per

day on Highway 322 and 2992 vehicles per day on Highway 315, respectively.
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Both volumes were overestimated, with an associated error of 39% for

Highway 322 and 12% for Highway 315, respectively. The averaged

estimation error for local numbered roads is about 25%.

The largest error occurred on Highway 322. Traffic on both local

numbered roads was overestimated. This could also be attributed to the

location of the short-term counts. The counts were taken at the junction of
the two roads, which occurred south of the analysis zone. Since there are

residential dwellings along these roads, and several intersecting local named

roads, these counts may not be indicative of actual traffic volumes on the

road segments within the zone because traffic that has entered or discharged

from the road before the location of the estimate will not be captured.

The R2 value was 0.9785, which indicates a strong correlation between

observed and estimated traffic. Like the previous example, a regression

model could be developed in the future as a calibration tool to reduce the
overall overestimation bias for other links within the area. In this case, the

small sample size makes this impossible and therefore no analysis was

carried out.

Overall, the TDM was able to capture the travel patterns of the zone

fairly well. Intuitively, Highway 134, which serves as the main street for the

CBD, should have the highest traffic volumes in the zone. This behavior was

successfully captured by the TDM and confirmed by the observed traffic

counts. The estimated volume of locally generated traffic was also fairly close
to observed values.

Surface-treated local named roads under the jurisdiction of the province

represented 84 km of road in the analysis zone. The TDM used in this study

estimated traffic volumes for 50 km (60%) of these roads. There is currently

no way to assess the accuracy of individual estimations on these roads

without taking additional traffic counts for comparison. It should be noted

that with a reduced study area size, the magnitude of the estimation error on

low-class roads will be reduced, as it is the case here.
The analysis to the higher class roads indicates that the model has

provided a good estimate of the total volume of traffic generated within the

zone and has captured the overall pattern of traffic movement in the zone.

Since these local named roads feed the traffic from the generating sites to the

higher class roads, it can be inferred that the estimated traffic volumes on

these links are indicative of the actual traffic volumes. Regardless of whether

or not the error in the estimated traffic volumes can be quantified, this

process has made data available for a significant portion of the road network
for which no data were previously available.

In order to address the issue of variability in the estimates, roads could be

classified into a volume range rather than be assigned a specific traffic

volume. This can be useful for identifying high-priority road segments within

the same road class. Table 1 shows the identified local named road groups by

traffic volume for the Beresford CCS area. It can be found the results look
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reasonable in that most road segments (62%) are identified as low or very

low classes with an AADT less than 1000 vehicles/day. Thirteen roads (15%)

are identified as high-volume ones and 19 (23%) are assigned into medium

volume group. GIS presentation reveals these medium or high-volume roads

are close to the CBD or waterfront areas. The forecasted traffic is quite fit

with the expected distribution. Study results show that, rather than assigning

a specific value, a relative classification scheme could be used (e.g. low�high)

to describe road links. Prioritizing these roads based on the estimated

volume classes could significantly improve operations from an asset

management perspective.

Conclusions

Our literature review indicated that previous research mainly used traffic

count data-based regressions to estimate traffic volumes. However, the

majority of them focused on high-class roads (e.g. collector or above) as

traffic counts are usually not available for lower class roads. The remaining

work for local roads falls short in addressing the volume variations within

individual groups. Statewide TDM have been developed and implemented in

many jurisdictions and they can be used to estimate traffic volumes.

However, they are not useful for addressing the issue of low-class/low-

volume roads as the local roads are generally not included in these models.

This study examined the feasibility of using a TDM to estimate low-class

road traffic volumes. Two regions in New Brunswick were chosen to test and

implement a TDM: York County and the CCS of Beresford. The results

from the county case showed that estimates for arterial roads had the lowest

average error (9%), followed by collectors (45%), and local roads (160%), as

compared to observed traffic counts. An overall overestimation trend was

found across nearly all study sites and thus indicates traffic was not

effectively distributed at the collector and local road level. Existing traffic

counts were used to develop the regression models for calibration purposes.

Regression analysis was used to analyze the correlation between the

forecasted traffic from the TDM and observed traffic counts, and linear

regressions were developed to recast the forecasts from the TDM to more

Table 1. Identified Beresford local named road groups by traffic volume.

Identified road

groups

Traffic volume range

(veh/day)

Kilometers of

road % of total

Very low 0�500 45 54

Low 500�1000 7 8

Medium 1000�2000 19 23

High 2000� 13 15
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reasonable ones. It was found that the calibrated models were useful to

remove overall overestimation trend from the TDM. In the case of York

County, the overall average error for the collector roads was reduced to 36%

and that for the local roads was limited to less than 40%.

Reducing the study area size resulted in increased estimation accuracy.

The overall average error of the Beresford CCS estimates was 17%. In

particular, the estimation errors for local roads were limited to less than 40%

and the average error was reduced to 25%.

The following conclusions were made based on the study results:

(1) Travel demand modeling for estimating traffic on low-class/

low-volume roads is practical and useful. The average estimation

errors for local low-class roads were limited to less than 40%

and that is comparable to or better than those reported in the

literature.

(2) For local roads, the relative magnitude of traffic estimates is more

important than the accuracy of individual links. TDM provides an

effective way to identify high-priority segments within the local road

class. That is, those roads with assigned traffic, especially high

volume, should be given priority.

(3) Using a TDM increases the amount of traffic information available

for a road network. Traffic information does not exist for the

majority of low-class roads. A TDM is non-invasive financially

feasible, cost-effective method to obtain these data. Census data,

traffic counts, and travel demand modeling software are readily

available for almost all highway agencies and thus the cost for

developing such a tool can be very low.

(4) Study area boundaries should be chosen to reflect the entire urban

influencing area. Using an arbitrary jurisdictional area, such as a

county, may result in inaccurate areawide travel patterns as it is

shown by the York County study in this paper. Boundaries should be

chosen such that the majority of local traffic in the area can be

assigned to one or more CBDs, regardless of whether the area is

urban or rural.

(5) The TDM approach does not assign traffic to some roads and tends

to overestimate traffic on the rest. Regression can be used to

calibrate the estimates in order to remove this bias and increase

the overall accuracy, particularly for lower class roads (collector and

local).

(6) Choosing an appropriate method of traffic assignment is important.

The SUE assignment method provides a better distribution of traffic

on the road network than traditional all-or-nothing methods. The

addition of available traffic counts as capacity constraints improves

the model accuracy.
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Several potential areas for further research can be identified. Low-class

road traffic can be modeled most effectively by reducing the size of the

analysis zone; however, this limits the model’s application. It may be

desirable for areas with a well-established statewide TDM to find a way to

incorporate local estimates into the model. This could be done by developing

an advanced assignment scheme. A method to assign a percentage of zone
traffic to local roads based on factors such as functional class, roadway

density, and proximity to trunk roads could be developed. Including other

characteristics that may be available, such as the number of driveways per

kilometer or resource road access, may also be useful for estimating local

road traffic. Also, the development of a more complex scheme for creating

an impedance matrix or adjusting the parameters of the gamma function

could provide a more accurate representation of the trip distribution.

Particularly in rural areas, a method to assign internal zone traffic to the
road network should be investigated.

A comprehensive model could also be created by increasing the

resolution of trip generating sites. Further disaggregation of socioeconomic

data to smaller areas (such as at the household level) and create a virtual

‘real world’ model would serve as the most accurate and versatile method.

Currently this is limited by the available resolution of census data. In this

way, rather than assigning traffic to road links based on trips from a single

generating site, trip generations could be spread over the entire road
network. While detailed models like this exist, they are typically fairly

difficult to develop. The use of GIS and land-use information from remote

sensing data could play a significant role in developing detailed models like

this quickly and effectively.
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