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Exploring Best-Fit Hazard Functions and Lifetime
Regression Models for Urban Weekend Activities:

A Case Study
Ming Zhong1 and John Douglas Hunt2

Abstract: Activity-based travel demand forecasting consists of modeling activity type, location, and duration with a view to improving
transportation planning and creating effective traffic management systems. Research to date has focused primarily on weekday activity
patterns, but given its steady increase, weekend activities and related travel demand also deserve attention. Limited research studied
weekend activities, and none of them was found to provide detailed specifications with respect to best-fit hazard functions and lifetime
regression models. This study, which took place in Calgary, Alberta �a Canadian city of 1 ,000,000+�, is meant to address that gap. Ten
activity patterns of eight demographic groups were assessed and nearly 13,000 observations analyzed. Results affirm that most weekend
activities are neither work nor school related and tend to begin mid-day or later; analysis of activity participation by demographic group
shows that adults �19–64 years old� are the most active components of our society. Likelihood ratio tests confirm that a two-level
modeling exercise is required to handle the heterogeneity within the data: first, analysis by activity type and second, analysis by
demographic group. Eleven candidate hazard functions were examined for 10 weekend activities such as shopping or entertainment, then
best-fit hazard functions and lifetime regression models were determined. The results show a high degree of fit. It was found that the
best-fit parametric models for demographic subgroups are generally consistent with those based on activity type at the aggregate level, a
discovery that should simplify future applications. Lifetime regression models show that the starting time of a given activity and personal
mobility are the most significant factors influencing activity duration. The applicability of fully parametric, nonparametric, and semipara-
metric model is discussed and addressed at various points within the paper. The rounding problem of reported durations is also noticed and
discussed during the process of identifying best-fit hazard functions and lifetime regression models.
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Introduction

Travel demand modeling has focused on forecasting individual
activities and related travel patterns with the purpose of dampen-
ing traffic congestion at peak early morning and evening weekday
hours. Given increasing travel demand and limited space for con-
struction of new infrastructure, however, congestion has become
problematic at or near recreational areas, major shopping centers,
sports arenas, and bridges on weekends, especially in large cities
�Federal Highway Administration �FHWA� 2004a�. Review of the
literature shows that although many have investigated weekday
activities �Doherty et al. 2002; Gärling et al. 1994; Miller and
Roorda 2003�, relatively few have explored weekend patterns

�Allison et al. 2005; Bhat and Lockwood 2004; Bhat and Srini-
vasan 2005; Sall et al. 2005�. Those that have done so �Federal
Highway Administration �FHWA� 2004b; Parsons Brinckerhoff
�PB� Quade and Douglas, Inc. 2000� found weekend household
travel, in terms of trip length and number, to be comparable to
that of weekdays. Travel behavior, however, differs on weekends
as many more are able to participate in personal and social activi-
ties. Obviously, further attention to weekend travel is warranted.

A large survey of weekend household activity was completed
in 2001 in Calgary, Canada �Hunt and Atkins 2004� with the
purpose of collecting data for short-term traffic analysis and long-
term transportation planning. The comprehensive data obtained,
which permits analysis of weekend versus weekday activities and
related travel behaviors, provide helpful insights for policymak-
ing.

In this study, a literature review of duration/hazard models and
their applications for modeling household activities, especially
weekend activities, is first provided. Next, a brief introduction to
study data and a preliminary analysis of weekend activity pattern
and participation rate are presented. A large number of hazard
functions �HFs� and lifetime regression models are then examined
for each activity and demographic group, and best-fit models are
specified. Finally, discussion of model options, major findings and
conclusions, and future research are given.
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Literature Review

Review of Parametric/Nonparametric/Semiparametric
Duration Models

Statistical analysis of lifetime, survival time, and failure time
data—known as duration or hazard modeling—has long been cru-
cial to biomedical engineering, the social sciences, and other dis-
ciplines. Duration models are being increasingly used in
transportation studies �Bhat 2000; Hensher and Mannering 1994�.

Both accelerated-time and proportional-hazard parametric
models have been used to analyze lifetime data �Bhat 2000; Law-
less 2003�. The accelerated-time models assume that the effect of
covariates is equivalent to altering the rate at which time passes,
whereas the proportional-hazard models assume the covariates
affect the HF for T �Lawless 2003�. Among these models, the
following have demonstrated their usefulness and been applied in
a wide range of situations �Lawless 2003�: exponential, Weibull,
loglogistic, lognormal, extreme value �Gumbel�, and gamma. For
a more thorough discussion of parametric duration models, see
Lawless �2003�.

The aforementioned HFs are fully parametric and can be ap-
plied to questions with a sound theoretical foundation. If little or
no knowledge of the functional form of the hazard is available, a
nonparametric approach—for which there are no assumptions
concerning distribution of the baseline hazard—may be tried. It
must be noted, however, that the analyst cannot incorporate ex-
planatory variables for policy analysis with such an approach. The
most popular nonparametric method is the Kaplan-Meier estima-
tor. For such an approach, the duration scale is split into small
discrete periods; by assuming a constant hazard within each pe-
riod, the continuous-time step function hazard shape may be es-
timated. The Kaplan-Meier estimator is particularly good in
situations where we want to compare a small number of groups to
check if they have similar survival distributions. Several statisti-
cal methods, such as the logrank and Wilcoxon, exist for such
tests. Also, the nonparametric shape obtained from the Kaplan-
Meier estimator is particularly useful for empirically testing as-
sumed parametric baseline shapes �Lawless 2003�.

When there is no clear choice concerning HFs, the use of
semiparametric hazard models is a relatively safe approach
�Lawless 2003�. Although the distributional assumption for the
baseline hazard may be arbitrary, certain assumptions may be
made about the functional form: how, for example, external co-
variates interact with the model’s baseline hazard. Two parametric
forms, the proportional and the accelerated lifetime, are usually
employed to accommodate the effect of external covariates on
the hazard �Lawless 2003�. The best-known semiparametric
proportional-hazard model was introduced by Cox �1972�. Semi-
parametric models allow for relaxation of the assumption of a
parametric relationship between the various factors and the result-
ing hazard rate. It should be noted, however, that the multiplica-
tive form of interaction between the baseline hazard and external
covariates is a strong assumption that requires careful checking
when applied �Lawless 2003�. If the hazard is generated from a
known distribution when a semiparametric model is employed,
statistical efficiency will be lost. Whenever information about
hazard distribution is not used, a higher error rate and less precise
coefficient estimates result �Hensher and Mannering 1994�.

Duration Modeling of Activity Patterns

Using data from the San Francisco Bay Area Travel Survey of
2000, researchers at the University of Texas at Austin first drew
attention to weekend travel activity patterns. Lockwood et al.
�2005� analyzed average frequency and duration, time of day,
mode of travel by trip purpose, trip distance by purpose, volume
of travel by trip purpose, sequence of activity episodes, activity
episode chaining, and purpose of the first and last daily out-of-
home episodes. Although this study presented a relatively com-
prehensive picture of weekend activities in the Bay area by means
of statistical analyses, neither duration models nor assessment of
lifetime regression for the activities was provided.

Sall et al. �2005� and Bhat and Srinivasan �2005� proposed a
weekend activity analysis framework, separating their analyses
into the following highest, medium, and lowest levels: pattern,
tour, and episode. At the pattern level, the number of daily
nonwork/nonschool stops was estimated by means of a multivari-
ate, ordered, and response choice model. The sequencing of all
activity episodes and the number of in-home episodes were then
examined using multinomial logit models. At the tour level, mode
choice was the only attribute considered; a discrete choice frame-
work was used. At the episode level, the researchers employed
hazard-based duration models to determine the first �morning�
home-stay duration; modeled travel time according to episode and
episode duration using simultaneous linear regression; and lo-
cated stops by means of a disaggregate spatial destination choice
model. Although methodologies for duration modeling were pro-
posed, no statistical results were given. Recent work of the Austin
groups focuses on modeling frequency of participation in week-
end activities �Bhat and Lockwood 2004; Bhat and Srinivasan
2005�.

Researchers have increasingly applied duration models to as-
sess nonwork activities. Ettema et al. �1995� used competing risk
hazard models to model activity choice, timing, sequencing, and
duration of activities of 39 students at Holland’s Eindhoven Uni-
versity of Technology. Using New York household survey data
from 1997/1998, Chu �2005� employed a Type II Tobit model to
analyze nonwork activity durations of workers. Hamed and Man-
nering �1993� estimated work-to-home travel time with ordinary
and three-stage least-squares regression models, reporting a cor-
rected R2 of 0.11 for ordinary and 0.188 for the latter. When they
estimated the Seattle commuter work-to-home departure delay
time, Mannering and Hamed �1990� advised using a duration
model based on the Weibull distribution. The choice of the
Weibull distribution is based on their finding that the end of a
departure delay can be viewed as being induced by any one of a
number of random factors, such as decreased homeward-bound
congestion, boredom with the activity undertaken, and early
completion of the activity. Because end times of departure delays
depend on the shortest time to the occurrence of one of these
random factors, they argued, it should follow the distribution of
the smallest extreme. The Weibull distribution method is therefore
appropriate. They achieved a standard error of 0.148 for their
duration parameter estimates.

Hamed and Easa �1998� developed a Weibull-based
proportional-hazard model for modeling urban shopping dura-
tions in Amman, Jordan within a larger integrated modeling
framework. They reported the significance of the following fac-
tors in influencing shopping activity durations: the presence of
children, transportation mode, household income, commuter’s age
and gender, origin of shopping, distance to shopping destination
�travel time to shopping�, postactivity type, and time of day and
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number of people in the vehicle. They found that the heterogene-
ity within the data was significant and females tended to spend
longer time than males in shopping. They justified their choice of
the Weibull-based hazard model with its attractive property of
being able to model a monotonically falling or increasing risk.
They found that the shape parameter of the Weibull duration
model was positive and greater than 1 and thus indicating an
increasing HF �Hamed and Easa 1998�.

There have been numerous other applications of duration mod-
eling in the transportation area. Nam and Mannering �2000� used
hazard-based duration models to evaluate the time of incident
detection/reporting, response, and clearance in Washington State;
Wang et al. �2002� used fuzzy logic based Weibull duration mod-
els for studying vehicle breakdown time on motorways in the
U.K. The fuzzy logic approach is to account for subjective, am-
biguous, and uncertain information presented in the accident re-
porting system. Paselk and Mannering �1994� used loglogistic
duration models to study vehicular delay at U.S./Canada border
crossings. Stathopoulos and Karlaftis �2002� examined the four
most widely used HFs for modeling congestion durations in Ath-
ens, Greece, and found that the loglogistic form is most appropri-
ate. Gilbert �1992� employed a Weibull duration model to study
length of car ownership. Hensher and Mannering �1994� provided
a comprehensive review of applications of hazard-based duration
models in transport analysis; Lawless �2003� reviewed applica-
tions in areas other than transportation. For further details, please
see Lawless �2003�.

Data and Primary Analyses

Data set from 2001 Calgary Household Activity Survey is used in
this study �Hunt et al. 2005�. The data used in this study includes
personal type �demographic group�, employment status �full- or
part-time�, annual income level, gender, age, household size �the
number of people in the household�, driving capability �holding
driving license or not�, activity type, activity duration �in min-
utes�, and start/end times of activity. The investigation comprised
10 types of activities, including �1� travel-related activities such
as commuting, drop off, or pick up; �2� work; �3� school; �4�
shopping; �5� sociality �getting together with friends or family�;
�6� eating; �7� entertainment; �8� exercise; �9� religious and civic
activities; and �10� out-of-town travel. There are eight personal
types or demographic subgroups defined in the data, which are
primarily based on people’s age and their socioeconomic status.
These demographic subgroups are: adult nonworking �AO�, adult
worker needing car �AWNC�, adult worker, no need of car
�AWNNC�, K-9 students �KEJS�, 10–12 students �SHS�, postsec-

ondary students �PSSs�, seniors 65+ �SEN�, and young other
�YO�. The 10 annual household income categories used were: less
than $25,000; $25,000–$35,000; $35,000–$45,000; $45,000–
$55,000; $55,000–$65,000; $65,000–$75,000; $75,000–
$100,000; $100,000–$125,000; $125,000–$150,000; and more
than $150,000. These activity types and identifiers, demographic
groups, and annual income levels were defined in the Calgary
survey and used here directly. There were 12,916 observations;
once those with missing durations were excluded, 12,882
remained for analysis.

One of the first issues to be addressed was how to classify data
to model activity durations. Three approaches exist and they are:
by individual activity, by demographic group, or by both. Various
statistical and plotting methods were employed to check at which
level the modeling should be done. Box plots were used to view
the distribution of activity duration based on activity and personal
type �the results are not shown here�. Substantial differences were
found between mean levels of activity duration; whereas a travel-
related activity �dropping someone off, for example� might take a
few minutes, a work period typically lasts 200 min or more. Table
1 shows the summary statistics for the 10 activities studied. Large
differences between mean and median durations for different ac-
tivities suggest such activities should be modeled separately. A
likelihood ratio test �LRT� was also carried out to test if a full
model including all activities is transferable, that is, to test
whether a single model can be used to model durations of all
types of activities together �Washington et al. 2003�. Study results
show that a full model has a much smaller loglikelihood
��49,406� than the sum of all loglikelihood of the submodels
��45,067� developed for each individual activity. The critical chi-
square value at 95% confidence level with a degree of freedom
�DOF� of 163 is �0.95

2 �163�=193.8, whereas the test statistic
is calculated as �=−2�−49,406+45,067�=8,676. Since �
��0.95

2 �163�, the hypothesis of a full model with transferability is
rejected.

A Cochran’s Q test �Gavaghan et al. 2000; Higgins et al. 2003�
was also used to check if there is significant heterogeneity within
the data �results are not shown here�. The p values of inlying and
outlying variance test are found all less than 2.2�10−16 and thus
further confirm the presence of heterogeneity. Further analysis for
the equal shape parameters across activity groups resulted in a
likelihood ratio chi-square statistic of 1,080.36 with a p value of
0.000. All of the aforementioned statistics support that the preced-
ing activities should be modeled separately. Another discovery
from the data was that activity duration distributions skew to the
right, which indicates models based on distributions other than
normal are desirable �Weibull, for example�.

Figs. 1�a and b� show weekend and weekday household activ-

Table 1. Descriptive Statistics for Activity Durations Based on Activity Type

N Mean SDV COV �%� Minimum Median Maximum

Travel related, etc. 1,019 6.218 14.094 226.67 1 2 311

Work 1,252 241.31 158.32 65.61 1 225 990

School 182 191.84 113.15 58.98 2 180 610

Shopping, etc. 4,539 42.923 45.404 105.78 1 30 780

Sociality, etc. 1,474 137.69 129.89 94.33 1 95 1,440

Eating 1,604 56.96 43.58 76.51 1 45 390

Entertainment, etc. 1,603 135.41 97.62 72.09 1 120 660

Exercise 407 99.7 59.4 59.58 1 90 430

Religious, etc. 787 124.09 75.08 60.5 1 105 600

Out-of-town 15 580.6 335 57.7 60 690 1,110
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ity patterns. The magnitude of activities are consistent with ex-
pected weekly periodicity: Fig. 1�a� shows a much stronger
participation of “typical” weekend activities, such as shopping,
sociality, and religious, civic, etc.; whereas Fig. 1�b� shows that a
higher level of the typical weekday activities, such as travel re-
lated �commuting, pick up or drop by�, work, school, and out-of-
town travel �for business purpose�. Please note that a larger scale
is used for presenting the weekend activities. With the exception

of religious and civic activities, Fig. 1�a� reveals that most week-
end activities begin in the afternoon �i.e., after 0.5 in the figure
which represents the noon�. It is also interesting to notice that
weekend activities tend to have fewer peaks than their weekday
counterparts. For example, there are three peaks for the weekday
commuting travel �A� corresponding to morning, noon, and
evening peaking hours, but there is only one very small peak for
the weekend travel. Similar finding can be observed for the school
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Fig. 1. Comparison of household: �a� weekend; �b� weekday activity patterns
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�E� and out of town �Z� activity, as people tend to start their
out-home activities late over the weekends. As is shown in Fig.
1�a�, intensity of weekend activity over a short period in the af-
ternoon indicates a relatively high traffic demand, and therefore
may challenge urban traffic management systems significant
enough to require special traffic control strategies.

Fig. 2�a� shows participation rates for diverse weekend activi-
ties. Activities that comprise more than 3% of the total are pre-
sented in the bigger pie chart on the left; others are shown in the
smaller bar chart to the right. Traveling and eating, routines of
daily life, absorb about 60% of total activities; entertainment,

shopping, and sociality �20.4, 8.4, and 4.3%, respectively� domi-
nate about 33% of the rest of 40% of weekend activities. The
“typical weekday” activities: work �2.3%�, school �1.2%�, exer-
cise and religious/civic activities �less than 2%�, and out-of-town
travel �0.04%� are relatively insignificant.

Fig. 2�b� shows the demographic composition of different
weekend activities based on the activity type. Clearly AWNC and
AWNNC participate most actively in such activities. Except for
school activity, AWNCs and AWNNCs account for 60–70% of
participants. The shopping activity of these two subgroups takes
about 78% of the total; sociality, 64%; and out of town, 60%.
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Fig. 2. �a� Percentage of different weekend activities; �b� demographic participation
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Table 2. Goodness-of-Fit Tests for Individual Activity Type

Distribution

Travel related Work School Shopping Sociality Eating
Entertainment/

leisure Exercise Religious, etc. Out-of-town

AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR

Weibull 127.45 0.81 12.25 0.98 1.53 0.98 29.16 0.98 2.51a 0.99 19.41 0.98 9.15 0.99 3.06 0.98 4.45 0.96 2.53 0.84

Lognormal 49.21 0.91 41.51 0.92 4.39 0.93 15.71 0.99 19.88 0.96 9.22 0.99 37.28 0.94 4.45 0.95 10.45 0.91 2.93 0.77

Exponential 133.57 N/A 83.53 N/A 18.69 N/A 18.14 N/A 7.18 N/A 96.98 N/A 80.46 N/A 49.57 N/A 93.35 N/A 3.66 N/A

Loglogistic 58.99 0.90 37.57 0.92 3.96 0.93 23.68 0.99 20.67 0.96 10.28 0.99 33.50 0.94 3.10 0.97 7.60 0.93 2.92 0.78

Three-parameter
Weibull

98.24 0.84 3.90 0.98 0.69 0.99 13.05 0.99 2.62 0.99 17.67 0.98 4.49 0.99 3.29 0.99 3.47 0.99 2.36b 0.91

Three-parameter
lognormal

50.63 0.92 3.10a 0.99 0.67b 0.99 10.16 1.00 6.02 0.99 8.12 0.99 2.75a 1.00 1.49 0.99 1.54b 1.00 2.33 0.89

Two-parameter
exponential

100.22 N/A 82.13 N/A 16.59 N/A 39.78 N/A 7.13 N/A 88.46 N/A 77.37 N/A 46.61 N/A 91.26 N/A 3.96 N/A

Three-parameter
loglogistic

61.07 0.90 5.33 0.98 0.86 0.99 23.02 0.99 12.83 0.98 10.46 0.99 4.75 0.99 0.76b 1.00 2.08 0.99 2.30 0.90

Smallest extreme
value

191.63 0.38 69.94 0.91 6.01 0.93 584.98 0.73 125.1 0.81 139.88 0.77 95.32 0.86 30.16 0.84 37.47 0.87 2.38 0.91

Normal 102.77 0.49 9.04 0.98 0.89 0.99 184.82 0.86 30.75 0.92 46.01 0.88 17.42 0.95 7.87 0.93 8.09 0.95 2.33 0.89

Logistic 99.84 0.52 10.52 0.97 0.87 0.98 177.40 0.87 34.19 0.92 43.68 0.89 16.08 0.96 6.73 0.94 8.31 0.96 2.29 0.90

Best-fit model Lognormal Three-parameter
lognormal

Three-parameter
lognormal

Three-parameter
lognormal

Weibull Three-parameter
lognormal

Three-parameter
lognormal

Three-parameter
loglogistic

Three-parameter
lognormal

Three-parameter
Weibull

Note: N/A�not applicable.
aInsignificant at 99% confidence level �critical AD value at the 99% confidence level is 3.857 for n�8, Lewis �1961��.
bInsignificant at 95% confidence level �critical AD value at the 95% confidence level is 2.492 for n�8, Lewis �1961��.
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Based on these observations, greater attention should be given to
the travel behavior of adults �19–64 years old�.

Study Models and Results

As mentioned in the previous section, duration modeling is of
three kinds: full parametric, nonparametric, and semiparametric.
One of the first things to determine is which model kind should be
used. Because the nonparametric approach does not incorporate
parameters and thus cannot be used for policy analysis, it was not
considered for modeling; it was, however, used to help judge
whether subgroups share a common survival function �SF�. The
choice between the full and semiparametric approach is based on
whether a proportional-hazard assumption is appropriate, and
whether or not a good parametric fit can be achieved.

Based on our primary analyses �see previous section�, investi-
gation focused on activity and personal type. First, 11 parametric
HFs were explored for each activity �e.g., shopping or working�
and the best-fit parametric models identified. The following dis-
tributions were tested: Weibull, lognormal, exponential, loglogis-
tic, three-parameter Weibull, three-parameter lognormal, two-
parameter exponential, three-parameter loglogistic, smallest
extreme value, normal, and logistic. Table 2 shows the best-fit
models for 10 activity types assessed. Distributions were tested
and the fitness was evaluated by means of adjusted Anderson-
Darling test statistics �AD values in the table� and correlation
coefficients �COR in the table�. The criterion was to select the
distribution with the lowest AD value or the highest COR value.
As shown in Table 2, the resulting best-fit models for the 10
weekend activities are: lognormal or three-parameter lognormal
for travel-related activity, work, school, shopping, eating,
entertainment/leisure, religious, and civic; Weibull or three-
parameter Weibull for sociality and out-of-town activities; and
three-parameter loglogistic for exercise activity. The AD and
COR values for the best-fit models are identified with the bold
font in the table. It can be found that, in general, the best-fit
models identified all have a high COR value and a low AD value.
AD values below the critical values at the 95% �2.492� and the
99% �3.857� confidence level are all marked with “b” and “a,”
respectively. Except for travel-related and out-of-town activity,
COR values for the best-fit models are mostly 0.99 or 1.00 and
thus indicate a good fit. However, relatively large AD values
��8.0� for travel related, shopping, and eating activities indicate a
contradictory conclusion: lack of fit and a need for a finer model.
Close examination to the data of these activities revealed that
most study subjects reported their durations in integer minutes
�e.g., 1, 5, or 10 min� rather than “real spell” �e.g., 1.2 or 5.5
min�. The reported durations are mostly clustered to these im-
puted values �e.g., 1, 2, or 5 min�. AD statistics here, which show
the squared distance between the fitted line �based on a chosen
distribution� and the nonparametric step function �based on the
plot points�, weigh more heavily in the tail areas of the distribu-
tion �D’Agostino and Stephens 1986�. Evidently the statistics are
very sensitive to imputed values at the left tail of the distribution
and result in large AD values.

The small number of observations resulted in a deteriorated
correlation coefficient for out-of-town activity, for which there are
only 15 observations. Because of nonimputed data, however, the
AD statistic shows a very good fit. The AD value for the best-fit
model �three-parameter Weibull� is only 2.36, which is less than
the significant point of 2.492 at the 95% confidence level �Lewis
1961�. The high percentage of imputed observations for travel-

related activity resulted in a low correlation coefficient �0.91� and
a large AD test statistic �49.2�.

To investigate whether demographic subgroups �e.g., AWNC
and SEN� for each activity could be combined and modeled with
one HF/SF, the Kaplan-Meier method was used to check under-
lying distributions of the data. Fig. 3 provides survival plots for
demographic subgroups of the sociality activities and calculated
test statistics. The logrank and Wilcoxon statistics shown in the
figure are significant at 99.9% confidence level with the p values
of 0.000. The results support that these subgroups are signifi-
cantly different and that individual HFs should be specified.
Crossovers among subgroup SFs indicated that semiparametric
proportional-hazard approaches are not appropriate unless these
curves are approximately parallel with, rather than intersecting,
each other. Again, 11 candidate parametric models were tested
based on the subgroups and best-fit models specified. Table 3
shows the AD and COR values of these models. The best-fit mod-
els, shown in bold font again in the table, are those with the
largest correlation coefficients and/or the lowest AD values. It can
be found from the table that the best-fit models identified all have
a higher COR ��0.96� and a low AD value �	1.7�. These statis-
tics indicate these models fit the data very well. Another finding
from the table is that the best-fit models for subgroups are con-
sistent with those of the aggregated group. For six out of eight
subgroups, the Weibull/three-parameter Weibull was identified as
the best-fit model. Other model types were chosen in only two
cases: the three-parameter lognormal model for the KEJS group
and the three-parameter loglogistic model for the YO group. But
even in these cases, the differences between the AD and COR
values of the Weibull/three-parameter Weibull and those of the
identified best-fit models �three-parameter lognormal or loglogis-
tic� are very small �less than 0.3�. Therefore, the model based on
the Weibull distribution can be used for every subgroup to reduce
complexity in the modeling process. With continuous modeling
efforts, the high correlation coefficients ��0.96� and low AD val-
ues �	1.7� show the improved goodness-of-fit. The study results
emphasize that the parametric rather than the semiparametric ap-
proach should be used when underlying data distributions can be
clearly identified �Hensher and Mannering 1994; Mohammadian
and Doherty 2004�. Analyses of the other activities also revealed
that in most cases, subgroups share a common best-fit model form
�albeit with different parameters�.

Fig. 4 shows the estimated probability density functions
�PDFs�, probability plots, SFs, and HFs for sociality subgroups

activityminutes-social
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Fig. 3. Nonparametric survival plots for demographic subgroups’
sociality activities
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Table 3. Goodness-of-Fit Tests for the Demographic Subgroups of Sociality Activities

Personal
type

Assumed distributions

Normal Exponential
Two-parameter

exponential Weibull
Three-parameter

Weibull Lognormal
Three-parameter

lognormal
Smallest extreme

value Logistic Loglogistic
Three-parameter

loglogistic

COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD

AO 0.94 1.60 N/A 1.79 N/A 2.05 0.96 1.53a 0.965 1.53 0.931 1.72 0.945 1.58 0.919 1.97 0.932 1.67 0.926 1.79 0.935 1.65

AWNC 0.95 5.47 N/A 3.05 N/A 3.478 0.98 1.41 0.989 0.87a 0.94 6.40 0.988 1.38 0.862 24.01 0.948 6.39 0.94 6.04 0.975 2.75

AWNNC 0.91 14.41 N/A 5.25 N/A 4.676 0.99 1.35 0.995 1.31a 0.968 7.35 0.989 3.05 0.81 56.27 0.915 16.24 0.966 8.00 0.977 5.97

KEJS 0.96 3.22 N/A 3.84 N/A 3.846 0.98 1.58 0.985 1.46 0.938 5.48 0.985 1.20a 0.882 15.70 0.956 3.82 0.937 5.53 0.972 2.01

PSS 0.86 7.60 N/A 2.04 N/A 2.364 0.99 0.82 0.994 0.63a 0.984 1.03 0.991 0.73 0.747 24.49 0.869 6.84 0.981 1.20 0.984 1.06

Sen 0.94 1.86 N/A 1.73 N/A 1.756 0.96 1.77 0.983 1.67a 0.962 1.73 0.963 1.72 0.897 2.27 0.93 1.90 0.955 1.77 0.957 1.76

SHS 0.97 1.40 N/A 3.27 N/A 3.166 0.98 0.71 0.993 0.52a 0.928 1.87 0.988 0.70 0.906 5.83 0.963 1.65 0.932 1.84 0.978 1.02

YO 0.85 2.94 N/A 0.94 N/A 1.372 0.97 1.11 0.979 0.99 0.982 0.76 0.989 0.71 0.755 9.09 0.86 2.51 0.984 0.69 0.989 0.66a

Average 0.93 4.81 N/A 2.74 N/A 2.84 0.98 1.29 0.99 1.12a 0.95 3.29 0.98 1.38 0.85 17.45 0.92 5.13 0.95 3.36 0.97 2.11

Note: N /A=not applicable.
aInsignificant at 95% confidence level �critical AD value at the 95% confidence level is 2.492 for n�8, Lewis �1961��.
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based on three-parameter Weibull distributions. According to the
probability plots, the data fit the lines very well. The PDFs, SFs,
and HFs for subgroups are different from each other, especially
with respect to HF. For example, the hazard rate for the AWNNC
and SHS subgroups increase with duration, whereas the others
have a decreased �for the SEN and PSS groups� or nearly constant
�for the KEJS group� hazard rate. Close examination to the HFs
indicates that hazard rates for most groups change significantly
during the first 50 min, but are fairly stable thereafter.

With estimated parameters, hazard rates can be easily calcu-
lated at any time. Based on the three-parameter Weibull distribu-
tion, the estimated HF for the sociality activity of the AWNC
subgroup is

h�t� = �
���t − ���
−1 =
1.043

142.09
� t + 1.58

142.09
�0.043

where t�0. The hazard rate at time t=10 can then be calculated
as 0.0066. This means that when sociality duration lasts to 10
min, the probability of abandoning such activity is 0.66% for this
particular demographic group. That is, out of 1,000 people from
this group, about seven will stop their sociality activity when its
duration approaches to 10 min. The shape parameter 
=1.043 is
greater than 1 and thus indicates that the hazard is increasing as
the duration increases.

Lifetime regression models were explored with a view to pre-
dict duration based on activity and socioeconomic attributes. Such
models can be viewed as a starting point for developing policy-
responsive duration models. Another log-LRT was also carried
out for the sociality data, to test whether a full model for consid-
ering all demographic subgroups is transferable. Basically, it was
found that the model is not transferable because the LRT statistic
�73.5� is greater than the critical chi-square value �55.8� at the
95% confidence level with a DOF of 40. However, it can be found
that there is not much difference between the LRT statistic and
the calculated chi-square value, and the failure of transferability
test can be attributed to the rounding of reported durations. There-
fore, for the purpose of simplicity, two types of models including

all demographic groups are developed within this study: one con-
siders demographic group as a fixed effect and the other one
considers it as unobserved heterogeneity.

An initial model was developed �results are not shown here�
by including every independent variable �including person type,
start/end time, annual income level, household size, driving capa-
bility, and age group� and that resulted in redundant information.
It was found that most variables within the model were not sig-
nificant at the 95% confidence level. The model resulted in a
loglikelihood of �5,846.18. A kind of “stepwise regression,” that
involves deleting or adding independent variables one by one,
was used to refine the model. The rationale behind this approach
is the principle of “parsimony.” During the process, an interim
full model with all independent variables and the square term of
the “start time” was also developed. The resulting loglikelihood
was �5,832.96 and the square term of the start time was found
significant. Therefore, the final models identified include the
square term of the start time, start time, and the driving capability
�indicated by holding a driver license or not�. Fig. 5, based on the
sociality data, shows the regression table for the two final models,
with Fig. 5�a� for the first type of model �fixed group effect� and
Fig. 5�b� for the second type �unobserved heterogeneity� men-
tioned earlier. Although the number of independent variables was
reduced from 13 of the initial model to 3, the loglikelihood was
improved from �5,846 �of the initial full model� to �5,842 �of
the reduced model shown in Fig. 5�a��. The covariates changed to
become significant, as supported by the large z values and small p
values. Moreover, a LRT was also carried out between the full
model with the square term of the start time and the reduced
model shown in Fig. 5�a�. The LRT statistic was calculated as �
=−2� �−5,842.2+5,832.96�=18.48, whereas the critical value
of the chi-square distribution at the 95% confidence level with a
DOF of 10, �0.95

2 �10� is 18.31 �note that the reduced model has 10
fewer variables than the full model�. Since the p value for the
LRT statistic is 0.0474 that is very close to 5%, we can conclude
that the reduced model provides almost an equal fit to the data,
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but in a much parsimonious form. Thus the reduced model is
preferred and kept.

Fig. 5�a� shows the two most important factors influencing the
duration of people’s sociality activity. The “driving capability” is
to measure whether a person has a driver’s license and thus indi-
cates his/her mobility level. The start time used in the model is
actually a number ranging from 0 to 1, with “0” representing for
the midnight and 0.5 for the noon. It is used as a proxy represent-
ing how far a start time is from or to the midnight �or noon� and
thus indicates a person’s time constraint in executing an activity.
Study results clearly confirm the importance of people’s mode
and time constraints in influencing their activity durations.

A lifetime regression model for considering unobserved het-
erogeneity at the demographic group level was also developed, as
shown in Fig. 5�b�. It can be found from the figure that by con-
sidering group heterogeneity, the loglikelihood was improved
from �5,842 to �5,837 and the McFadden’s R2 was increased
from 0.0046 to 0.0054. However, the p value for the frailty term
of the regression model is not significant at the 95% confidence
level. It thus indicates that the group heterogeneity has been ex-
plained by all the predictor variables and there is no unobserved
heterogeneity among the groups at the social activity level. The

small McFadden’s R2 values indicate that the data have a large
amount of random noise. This may be attributed to the inherent
rounding nature of reported duration data. However, the selected
predictor variables are significant and are able to explain the ob-
served variation in the data.

The shape parameters for the final regression models are all
greater than 1.0 within their 95% confidence intervals, as shown
in Fig. 5. This indicates that an increasing HF should be used for
modeling sociality durations.

Concluding Remarks

Household activities and corresponding travel patterns are impor-
tant themes of activity-based transportation planning. Previous
research has focused on weekday activities, whereas relatively
little attention has been paid to weekends �Allison et al. 2005;
Lockwood et al. 2005�. This study, which examined weekend
household activities in Calgary, Canada, compared urban week-
end versus weekday activity patterns; identified important influ-
encing factors for activity durations; and specified best-fit hazard/

Response Variable: activityminutes-sociality
Uncensored value 995
Estimation Method: Maximum Likelihood
Weibull distribution

(a) Regression Table for the Final Model without considering group heterogeneity

Standard 95.0% Normal CI
Predictor Coef Error Z P Lower Upper
Intercept 5.78655 0.168197 34.40 0.000 5.45689 6.11621
Start -3.31782 0.600071 -5.53 0.000 -4.49394 -2.14170
Start*Start 3.19016 0.531231 6.01 0.000 2.14896 4.23135
Idrv_lic
Y -0.238518 0.0701853 -3.40 0.001 -0.376079 -0.100958
Shape 1.09893 0.0275447 1.04625 1.15427
Scale 177.6433

Loglik(model)= -5842.2 Loglik(intercept only)= -5869.2

Final model McFadden's R2= 0.004602289

Chi-sq= 54.02 on 3 degrees of freedom, p= 1.1e-11

(b) Regression Table for the Final Model considering group heterogeneity

Standard 95.0% Normal CI
Predictor Coef Error Z P Lower Upper
(Intercept) 5.7989 0.1788 32.43 1.00E-230 5.448452 6.149348
startnum -3.3728 0.6023 -5.6 2.14E-08 -4.553308 -2.192292
startnum2 3.2297 0.5332 6.06 1.39E-09 2.184628 4.274772
IdrvlicY -0.2312 0.0988 -2.34 1.93E-02 -0.424848 -0.037552
Shape 1.1034 0.0277 1.049108 1.157692
Scale 173.6852

Fraity(PersonType) Chi-sq=5.36, df=2.77, p=1.3e-01

Loglik(model)= -5837.4 Loglik(intercept only)= -5869.2

Final model McFadden's R2= 0.005419134

Chisq= 63.61 on 5.3 degrees of freedom, p= 3.4e-12

Fig. 5. Final lifetime regression models
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lifetime regression models based on activity type and
demographics.

Pattern analyses revealed weekend activities to be substan-
tially different from those of weekdays �Fig. 1�. Most weekend
household activities are executed in the afternoon. Compared to
weekday activities, there are less peaking patterns for the week-
end activities. For example, there is only one peak for most week-
end activities such as shopping at noon, or shortly after it,
whereas weekday activities usually peak twice or three times and
show wider distribution. Such distinct weekend activity and re-
lated travel patterns suggest they deserve special attention, as dif-
ferent traffic operation and control strategies may be required to
accommodate them.

The analyses carried out during this study confirm that non-
work related activities predominate weekends: the total participa-
tion rate of shopping, sociality, and entertainment is over 30%,
whereas work-related activity �work and school� is only about
4.5% of the total �see Fig. 2�a��. Analyses of the demographic
composition of different activities revealed that whether or not
they use cars, adults 19–64 years old �AO, AWNC, and AWNNC
subgroups, Fig. 2�b�� are the most active of the groups examined,
comprising more than 80% of the total activities �except for
“school”�. Future research, therefore, should focus on the activi-
ties and related travel behaviors of them.

The applicability of parametric, nonparametric, and semipara-
metric duration models was closely examined. Nonparametric
models, which do not allow for variables, were deemed inappro-
priate for policy analysis; they are, however, useful for checking
underlying distributions and helpful for specifying appropriate
parametric models. They were also used in this study to test
whether subgroups share a common SF, and whether, therefore,
proportional-hazard forms might be appropriate �Fig. 3�. The
semiparametric approach was not considered because �1� Kaplan-
Meier plots showed that the SFs of certain subgroups overlap and
hence violate the assumption of proportional hazards and �2�
competing parametric models showed a high goodness-of-fit. The
most frequently selected models were lognormal, followed by
Weibull and loglogistic models. This research also revealed that
models selected at the aggregate level �e.g., by activity type� are
highly consistent with those selected at the disaggregate level
�e.g., by personal type or demographic group� �see Table 3�.

Kitamura �1996� mentioned that only Weibull distributions are
considered for exclusively modeling durations of 18 daily activi-
ties, such as sleep, personal care, child care, meal, domestic
chore, work, and work-related school and study, in a framework
called prism-constrained activity-travel simulator. The results
from this study, however, clearly show that may not be appropri-
ate and a different distribution may need to be used for different
activity �Table 2�.

Lifetime regression models were explored for each household
weekend activity. Models that included many independent vari-
ables resulted in redundant information and most of them were
insignificant. For improved accuracy, a stepwise regression tech-
nique, which conforms to the principle of parsimony and poten-
tially alleviates the future data collection burden, was used to
refine the lifetime regression model. Including only three inde-
pendent variables in the final models, start time, the square tem of
the start time, and driving capability �see Figs. 5�a and b��, sig-
nificantly improved likelihood ratios and goodness-of-fit. It was
also found that the model fit will be increased by considering the
group heterogeneity; however, it was not significant and thus in-
dicates probably it is not necessary to consider such effect at the
activity level.

The “rounding” or “imputed nature” of reported durations in
the data resulted in deteriorated goodness-of-fit and reduced pre-
diction power of the models developed. They would likely be
more accurate if “real” durations had been reported. “Imputing”
rounded observations back to a normally distributed population
might solve the problem. Future research will explore this issue.

Acknowledgments

The writers are grateful to the Natural Science and Engineering
Research Council, Canada �NSERC� its financial support, and to
the city of Calgary for use of the data.

References

Allison, M. L., Srinivasan, S., and Bhat, C. R. �2005�. “An exploratory
analysis of weekend activity patterns in the San Francisco Bay Area.”
Proc., 84th Transportation Research Board Annual Meeting, Trans-
portation Research Board, Washington, D.C.

Bhat, C. R. �2000�. “Duration modeling.” Handbook of transport model-
ling, D. A. Hensher and K. J. Button, eds., Elsevier Science, Oxford,
UK, 91–111.

Bhat, C. R., and Lockwood, A. �2004�. “On distinguishing between
physically active and physically passive episodes and between travel
and activity episodes: An analysis of weekend recreational participa-
tion in the San Francisco Bay Area.” Transp. Res., Part A: Policy
Pract., 38�8�, 573–592.

Bhat, C. R., and Srinivasan, S. �2005�. “A multidimensional mixed
ordered-response model for analyzing weekend activity participa-
tion.” Transp. Res., Part B: Methodol., 39�3�, 255–278.

Chu, Y. L. �2005�. “Modeling workers’ daily non-work activity participa-
tion and duration.” Proc., 84th Transportation Research Board Annual
Meeting, Transportation Research Board, Washington, D.C.

Cox, D. R. �1972�. “Regression models and life tables.” J. R. Stat. Soc.
Ser. B (Methodol.), 34, 187–220.

D’Agostino, R. B., and Stephens, M. A. �1986�. Goodness-of-fit tech-
niques, Marcel Dekker, New York.

Doherty, S. T., Lee-Gosselin, M., Burns, K., and Andrey, J. �2002�.
“Household activity rescheduling in response to automobile reduction
scenarios.” Transp. Res. Rec., 1807, 174–181.

Ettema, D., Borgers, A., and Timmermans, H. �1995�. “Simulation model
of activity scheduling behaviour.” Transp. Res. Rec., 1413, 1–11.

Federal Highway Administration �FHWA�. �2004a�. “Traffic congestion
and reliability: Linking solutions to problems.” FHWA, U.S. DOT,
�http://www.ops.fhwa.dot.gov/congestion_report_04/congestion_
report.pdf� �Dec. 6, 2006�.

Federal Highway Administration �FHWA�. �2004b�. “2001 national
household transportation survey.” FHWA, U.S. DOT, �http://nhts.ornl.
gov/2001/pub/STT.pdf� �Nov. 18, 2006�.

Gärling, T., Kwan, M. P., and Golledge, R. G. �1994�. “Computational-
process modelling of household activity scheduling.” Transp. Res.,
Part B: Methodol., 28�5�, 355–364.

Gavaghan, D. J., Moore, A. R., and McQay, H. J. �2000�. “An evaluation
of homogeneity tests in meta-analysis in pain using simulations of
patient data.” Pain, 85, 415–424.

Gilbert, C. �1992�. “A duration model of automobile ownership.” Transp.
Res., 26�2�, 97–114.

Hamed, M. M., and Easa, S. M. �1998�. “Integrated modeling of urban
shopping activities.” J. Urban Plann. Dev., 124�3�, 115–131.

Hamed, M. M., and Mannering, F. L. �1993�. “Modeling travelers’ post-
work activity involvement: Toward a new methodology.” Transp. Sci.,
27�4�, 381–394.

Hensher, D. A., and Mannering, F. L. �1994�. “Hazard-based duration
models and their application to transport analysis.” Transport Rev.,

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602
603

604
605
606

607
608
609
610
611
612
613
614
615
616
617

618

619
620
621

622

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

JOURNAL OF TRANSPORTATION ENGINEERING © ASCE / MARCH 2010 / 11

  PROOF COPY [TE/2007/023759] 002003QTE  



  PROOF COPY [TE/2007/023759] 002003QTE  

  PRO
O

F CO
PY [TE/2007/023759] 002003Q

TE  
14�1�, 63–82.

Higgins, J. P. T., Thompson, S. G., Deeks, J. J., and Altman, D. G.
�2003�. “Measuring inconsistency in meta-analyses.” BMJ, 327, 557–
560.

Hunt, J. D., and Atkins, D. M. �2004�. “Characteristics of weekend travel
in Calgary.” Proc., Transportation Revolutions: Proc. of the 39th An-
nual Conf. of the Canadian Transportation Research Forum, Cana-
dian Transportation Research Forum �CTRF�, Calgary, Canada.

Hunt, J. D., Stefan, K., and McMillan, P. �2005�. “Microsimulating week-
end travel by households in Calgary.” Proc., 2005 Transportation
Association of Canada Conf., Transportation Association of Canada
�TAC�, Calgary, Canada.

Kitamura, R. �1996�. “Applications of models of activity behavior for
activity based demand forecasting.” Proc., Activity-Based Travel
Forecasting Conf., USDOT, New Orleans.

Lawless, J. F. �2003�. Statistical models and methods for lifetime data,
Wiley, Hoboken, N.J.

Lewis, P. A. W. �1961�. “Distribution of the Anderson-Darling statistic.”
Ann. Math. Stat., 32�4�, 1118–1124.

Lockwood, A. M., Srinivasan, S., and Bhat, C. R. �2005�. “An explor-
atory analysis of weekend activity patterns in the San Francisco Bay
Area.” Proc., 84th Transportation Research Board Annual Meeting,
Transportation Research Board, Washington, D.C.

Mannering, F. L., and Hamed, M. M. �1990�. “Occurrence, frequency,
and duration of commuters’ work-to-home departure delay.” Transp.
Res., Part B: Methodol., 24�2�, 99–109.

Miller, E. J., and Roorda, M. J. �2003�. “Prototype model of household
activity/travel scheduling.” Transp. Res. Rec., 1831, 114–121.

Mohammadian, A., and Doherty, S. T. �2004�. “A hazard model for the

duration of time between planning and execution of an activity.”
Proc., Conf. on Progress in Activity-Based Analysis, International
Conference on Recent Advances in Retailing and Services Science
�EIRASS�, Maastricht, The Netherlands.

Nam, D., and Mannering, F. �2000�. “An exploratory hazard-based analy-
sis of highway incident duration.” Transp. Res., Part A: Policy Pract.,
34, 85–102.

Parsons Brinckerhoff �PB� Quade and Douglas, Inc. �2000�. “Compara-
tive analysis, weekday and weekend travel with NPTS integration for
the RT-HIS: Regional travel-household interview survey.” Rep. Pre-
pared for the New York Metropolitan Transportation Council and the
North Jersey Transportation Planning Authority, Inc.

Paselk, T. A., and Mannering, F. L. �1994�. “Use of duration models for
predicting vehicular delay at a US/Canadian border crossing.” Trans-
portation, 21, 249–270.

Sall, E. A., Bhat, C. R., and Reckinger, J. �2005�. “An analysis of week-
end work activity patterns in the San Francisco Bay Area.” Proc., 84th

Transportation Research Board Annual Meeting, Transportation Re-
search Board, Washington, D.C.

Stathopoulos, A., and Karlaftis, M. G. �2002�. “Modeling duration of
urban traffic congestion.” J. Transp. Eng., 128�6�, 587–590.

Wang, W. Q., Chen, H. B., and Bell, M. �2002�. “A study of the charac-
teristics of traffic incident duration on motorways.” Proc., 3rd Int.

Conf. on Traffic and Transportation Studies, ASCE, Reston, Va.,
1101–1108.

Washington, S., Karlaftis, M., and Mannering, F. �2003�. Statistical and
econometric methods for transportation data analysis, CRC, Boca
Raton, Fla.

651

652
653
654
655

656

657
658
659

660

661
662
663

664

665
666
667
668
669
670
671

672

673
674
675
676
677
678
679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

12 / JOURNAL OF TRANSPORTATION ENGINEERING © ASCE / MARCH 2010

  PROOF COPY [TE/2007/023759] 002003QTE  


