FUNCTIONAL KINESTHETIC PERCEPTION OF COMPLEX BIONIC HAND MOVEMENTS

Paul Marasco, 3,4 Jacqueline Hebert, 5 Jon Sensinger, 1 Courtney Shell, 6 Johnathon Schofield, 7 Zachary Thumser, 8 Raviraj Nataraj, 1 Dylan Beckler, 4 Michael Dawson, 5 Dan Blustein, 5 Satinder Gill, 1 Rafael Granja-Vazquez, 8 Jason Carey and 1,9 Beth Orzell

1 Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic
2 Advanced Platform Technology Center of Excellence, Louis Stokes Cleveland Department of Veterans Affairs Medical Center
3 Division of Physical Medicine and Rehabilitation, University of Alberta
4 Glenrose Rehabilitation Hospital, Alberta Health Services
5 Institute of Biomedical Engineering, University of New Brunswick
6 Department of Mechanical Engineering, University of Alberta, Mechanical Engineering Building
7 Louis-Stokes Cleveland Department of Veterans Affairs Medical Center
8 Department of Biomedical Engineering, Stevens Institute of Technology
9 Prosthetics and Sensory Aids Service, Department of Physical Medicine and Rehabilitation, Louis Stokes Cleveland VA Medical Center

ABSTRACT

Clinical translation of advanced upper limb prostheses is limited because they do not provide meaningful movement sensation and require constant visual monitoring to complete even the simplest of tasks. Kinesthesia, the sense of body movement, allows us to feel the activity of our extremities without looking at them. This study moves prosthetic feedback into a new perceptual/cognitive framework by harnessing the kinesthetic illusion to provide relevant input to human amputees about complex prosthetic hand movements. In this study, illusion-inducing vibration of surgically reinnervated residual limb muscles in amputees with targeted reinnervation provided physiologically relevant kinesthetic sensation that allowed them to accurately sense and simultaneously control both virtual and mechatronic robotic hand movements in real-time without vision. On a proprioceptive motor task without vision the amputee study participants performed indistinguishably from able-bodied. Psychophysical evaluation of an active motor grip task shows that the kinesthetic feedback alone provides better system resolution than vision alone and when provided with both vision and kinesthesia together they perform optimally. The kinesthetic feedback provided a sense of authorship (agency) over movements and was implemented in clinically realistic 2-site antagonistic myoelectric prosthesis control to provide real-time sensation of hand open and hand close. The feedback system was implementable in physical devices in the context of clinical fitting constraints and the movement percepts can be driven to operate on speed scales relevant to commercially available prosthetic hands. These results open a new path to perceptually-integrated bi-directional bionic prostheses.