Vita

Matthew Dean Brannock

Candidate's name:

Universities Attended: Arizona State University (2020)

Bachelors of Science (Honors)

University of New Brunswick (2023) Masters of Science

Kaplansky's Conjectures and Actions on CAT(-1) Spaces

UNIVERSITY OF NEW BRUNSWICK

THESIS DEFENCE AND EXAMINATION

in Partial Fulfillment

of the Requirement for the Degree of Master of Science

by

Matthew D. Brannock

in the Department of Mathematics & Statistics

U.N.B., Fredericton, N.B.

Tuesday, November 14th, 2023 12:30 p.m.

Science Library, rm 108 & via MS TEAMS

Examining Committee

Dr. Nicholas Touikan Dr. Alyssa Sankey Dr. Arash Habibi Lashkari Dr. Viqar Husain Supervisor Internal Examiner External Examiner Chair of Oral Examination

Abstract

In the thesis we provide specific conditions on a ring Rand group G under which the group ring RG will satisfy the Kaplansky Conjectures on the existence or non-existence of nontrivial units, non-trivial zero-divisors and non-trivial idempotents in the group ring. We give a chain of implications on properties that a group must have to satisfy a these conjectures. Specifically, we define a special type of action of a group on a type of metric space of non-positive curvature called CAT(-1) space, and show that if a group acts in this special way on a CAT(-1) space, then this action will behave in a way that we call spherically diffuse. We then prove that if a group acts on a metric space in a spherically diffuse manner, then the group itself must be diffuse, which is a group theoretical property independent of any sort of metric space theory. Transitioning into group theoretical properties, we prove that if a group is diffuse then it satisfies something called the Unique Product Property. We then prove that if a group satisfies this property,

then the group ring formed by this group and any integral domain will satisfy the Kaplansky Conjectures.

UNIVERSITY of NEW BRUNSWICK FREDERICTON & SAINT JOHN