Vita
Candidate's name:

Universities
Attended:

Graham Andrew Atwood

University of New Brunswick (2018)
Bachelor of Science Honors

University of New Brunswick (2021)
Masters of Science

Conference Presentations:

"Cost Effective Alternative: The Synthesis of (5S, 7S)-conophthorin." Graham Atwood and David I. MaGee. Naturally-derived Semiochemicals for Insect Pest Management. Virtual Presentation. October 29, 2020.

Cost Efficient, Scalable Asymmetric Synthesis of Bronze Birch Borer Kairomone (5S,7S)-7-Methyl-1,6dioxaspiro[4.5]decane

UNIVERSITY OF NEW BRUNSWICK
THESIS DEFENCE AND EXAMINATION
in Partial Fulfillment
of the Requirement for the Degree of
Master of Science
by
Graham A. Atwood
in the Department of Chemistry
U.N.B., Fredericton, N.B.

Thursday, August 26 ${ }^{\text {th }}, 2021$
10:00 a.m.
Via MS TEAMS
Examining Committee
Dr. David MaGee
Dr. Ghislain Deslongchamps
Dr. Charles Sacobie
Dr. Gilles Villemure

Supervisor Internal Examiner Int-Ext Examiner Chair of Oral Examination

Abstract

With the increased use of birch trees, specifically
detection/trapping strategies of the pest to be
implemented before infestations occur.
non-native birches in parks, and beautification projects, an increase of infestations by the bronze birch borer (Agrilus anxius) has occurred. While reactive measures are available to try to remediate infested trees, a proactive strategy is not as widely available. (5S,7S)-7-Methyl-1,6-dioxaspiro[4.5]decane (5S,7Sconophthorin) has been identified as a possible kairomone that attracts bronze birch borers to susceptible trees. These susceptible trees include Eurasian varieties and stressed native North American species. While synthesized in the past, a scalable, cost efficient synthesis of this kairomone will likely enable its production industrially, and help allow for mass

