BACKGROUND
The Central Heating Plant (CHP) located at the University of New Brunswick, Fredericton Campus was built in 1970. During renovations in 1984, Boiler #1 was added as the baseload boiler and is now reaching its end of life.

OBJECTIVE
The objective of the project is to design a replacement boiler for Boiler #1. The replacement will be required to produce a minimum of 3,600 kJ/hr of saturated steam at 1,480 kPa. Secondary objectives include investigating cogeneration, improving efficiency, and maintaining a low carbon footprint for the boiler.

PROPOSED DESIGN
Steam and preheated air enter the circulating fluidized bed (CFB) boiler, where they combust. The hot flue gas enters Steam Generation.

COMBUSTION
Steam is produced in the boiler water walls and passes through the superheater before entering the turbines.

STEAM GENERATION
Superheated steam enters Power Generation where it splits to feed into a 3,600 kJ/hr and 10,900 kJ/hr turbines.

HEAT RECOVERY
Air and boiler feedwater are preheated by passing through the air preheater and economizer, respectively before entering combustion steam generation.

PARTICULATE REMOVAL
Flue gas passes through the electrostatic precipitator to remove the particulate matter before exiting the stack to the atmosphere.

ECONOMICS
- Overall proposed design was determined to be feasible
- Steam Production Only yield greater economic benefits

SENSITIVITY ANALYSIS
- **Internal Rate of Return**
 - Variation in Fuel Cost
 - Variation in Electricity Selling Price

CONCLUSIONS AND RECOMMENDATIONS
- The proposed design system efficiency increased by 16% from the current system to a value of 79%
- Hog fuel has allowed the system to have a low carbon footprint
- Electrical production determined to be not feasible

RECOMMENDATIONS
- Further investigate alternative boilers types and compare their turndown abilities
- Refrain from implementing a cogeneration system, as only producing steam is more economically viable
- Consider increasing the steam production to the maximum steam demand

ACKNOWLEDGEMENTS
Client: Mr. Marion (P. Eng) and his colleagues at CHP • Co-Mentors: Dr. Couturier (P. Eng) & Mr. Richard (P. Eng)
Course Instructors: Dr. Bendrich (P. Eng) & Dr. Couturier (P. Eng) • Additional UNB Support: Sylvia Demerson & Karen Annett