APPLICATION OF FOOTSTEP SOUND AND LAB COLOR SPACE IN MOVING OBJECT DETECTION AND IMAGE QUALITY MEASUREMENT USING OPPOSITE COLOUR PAIRS

Abstract

This PhD dissertation is focused on two major tasks of an Atlantic Innovation Fund (AIF) sponsored "Triple-sensitive Camera Project". The first task focuses on the improvement of moving object detection techniques, and second on the evaluation of camera image quality. Cameras are widely used in security, surveillance, site monitoring, traffic, military, robotics, and other applications, where detection of moving objects is critical and important. Information about image quality is essential in moving object detection. Therefore, detection of moving objects and quality evaluation of camera images are two of the critical and challenging tasks of the AIF Triple-sensitive Camera Project.

In moving object detection, frame-based and background-based are two major techniques that use a video as a data source. Frame-based techniques use two or more consecutive image frames to detect moving objects, but they only detect the boundaries of moving objects. Background-based techniques use a static background that needs to be updated in order to compensate for light change in a camera scene. Many background modelling techniques involving complex models are available which make the entire procedure very sophisticated and time consuming. In addition, moving object detection techniques need to find a threshold to extract a moving object. Different thresholding methodologies generate varying threshold values which also affect the results of moving object detection. When it comes to quality evaluation of colour images, existing Full-Reference methods need a perfect colour image as reference and No-Reference methods use a gray image generated from the colour image to compute image quality. However, it is very challenging to find a perfect reference colour image. When a colour image is converted to a grey image for image quality evaluation, neither colour information nor human colour perception is available for evaluation. As a result, different methods give varying quality outputs of an image and it becomes very challenging to evaluate the quality of colour images based on human vision. In this research, moving object detection using frame differencing and background subtraction techniques is improved by incorporating the sound of a moving person's footsteps in the camera scene and opposite colour pairs of Lab colour space respectively. Novel thresholding methodologies are also developed which consider spatial distribution of pixels in addition to the statistical distribution used by existing methods. A specified frame differencing technique shows an improvement of 52% in object detection rate when footstep sound is considered. Other frame-based techniques are also improved by incorporating footstep sound. The background subtraction technique produces better outputs in terms of completeness of a moving object when opposite colour pairs are used with thresholding using spatial autocorrelation techniques. The developed technique outperformed background subtraction techniques with most commonly used thresholding methodologies. For image quality evaluation, a new "No-Reference" image quality measurement technique is developed which evaluates quantitative image quality score as it is evaluated by human eyes. The SCORPIQ technique developed in this research is independent of a reference image, image statistics, and image distortions. Colour segments of an image are spatially analysed using the colour information available in Lab colour space. Quality scores from SCORPIQ technique using LIVE image database yield distinct results as compared to quality scores from existing methods which give similar results for visually different images. Compared to visual quality scores available with LIVE databse, the quality scores from SCORPIQ technique are 3 times more unique. SCORPIQ give 4 to 20 times distinguishable results compared to statistics based results which do not follow the quality scores as evaluated by human eyes.

Home of the School of Graduate Studies, Sir Howard Douglas Hall was designed by J.E. Woolford in 1825 and is the oldest university building in Canada still in use.

University of New Brunswick SCHOOL OF GRADUATE STUDIES

ORAL EXAMINATION

Aditya Roshan

IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ph.D. Candidate

Aditya Roshan

Graduate Academic Unit

Geodesy & Geomatics Engineering

April 11, 2019

12:30 p.m.

Head Hall (Room E-13)

Examining Board:

Dr. David Coleman, Retired (Geodesy & Geomatics Eng.)

Dr. Emmanuel Stefanakis (Geodesy & Geomatics Eng.)

Dr. Howard Li (Electrical & Computer Eng.)

Dr. Yun Zhang (Geodesy & Geomatics Eng.)

Supervisor

External Examiner:

Dr. Naser El-Sheimy, PEng, CRC Dept. of Geomatics Engineering University of Calgary

The Oral Examination will be chaired by:

Dr. Kevin Englehart, Acting Associate Dean of Graduate Studies

BIOGRAPHY

omversities attenued (with dates & degrees obtained).	
2012 – present	PhD candidate, University of New Brunswick
2008	MTech, Civil Eng., Indian Institute of Technology Kanpur, India
2005	MSc, Physics, Banaras Hindu University Varanasi, India
2003	BSc, Math & Physics, Chhatrapati Shahu Ji Maharaj University
	Kanpur, India

Universities attended (with dates & degrees obtained).

Publications:

- Roshan, A., & Zhang, Y., (2018), Using mel-frequency audio features from footstep sound and spatial segmentation techniques to improve frame-based moving object detection, *IET Computer Vision*, 12 (3), pp. 341-349, DOI: 10.1049/iet-cvi.2017.0209
- Roshan, A., & Zhang, Y., (2018), Lab Colour Space and Spatial Correlation based Moving Object Detection, *Journal of Electronic Imaging*, (under review)
- Roshan, A., & Zhang, Y., (2018), SCORPIQ A Referenceless Perceptual Image Quality Measurement Technique for Color Images, *Image Communication*, (under review)
- Zhang, Y., **Roshan, A.**, Jabari, S., Khiabani, S. A., Fathollahi, F., & Mishra, R. K. (2016). Understanding the Quality of Pansharpening—A lab study. *Photogrammetric engineering & remote Sensing*, 82(10), pp. 747-755
- Lohani, B., Roshan, A., & Singh, A. (2015), Simulation of LiDAR point cloud for a planet as generated by Satellite borne Laser Ranging Instrument, *Journal of Indian Society of Remote Sensing*, 43(3), pp. 521-528
- Roshan, A., & Zhang, Y. (2014), A comparison of moving object detection methods for realtime moving object detection, *Proceedings of SPIE* Vol. 9076, 907609 SPIE Digital Library
- Roshan, A., & Zhang, Y. (2014), Improved frame differencing based moving object detection using feet-step sound, *Proceedings of SPIE* Vol. 9076, 90760A SPIE Digital Library
- Lohani, B., Bhatnagar, N., & Roshan, A. (2008), Return pulse waveform simulation for LLRI onboard Chandrayan-1, *Journal of Indian Society Remote Sensing*, 36(1), pp. 1-11
- Lohani, B., Bhatnagar, N., & Roshan, A. (2008), Generating return waveform for LLRI Onboard Chandrayan-1, *CASST08*, IIT Kharagpur, Jan 14-16, 2008