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Abstract. The link between finite geometry and various classes of error-correcting codes is

well known. Arcs in projective spaces, for instance, have a close tie to linear MDS codes as well

as the high-performing low-density parity-check codes. In this article, we demonstrate a connection

between arcs and optical orthogonal codes (OOCs), a class of non-linear binary codes used for many

modern communication applications. Using arcs and Baer subspaces of finite projective spaces, we

construct some infinite classes of OOCs with auto-correlation and cross-correlation both larger than

1.
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1. Introduction. An (n, w, λa, λc)-optical orthogonal code (OOC) is a family of

binary sequences (codewords) of length n, with constant hamming weight w satisfying

the following two conditions:

• (auto-correlation property) for any codeword c = (c0, c1, . . . , cn−1) and for

any integer 1 ≤ t ≤ n− 1, there holds
n−1∑

i=0

cici+t ≤ λa

• (cross-correlation property) for any two distinct codewords c, c′ and for any

integer 0 ≤ t ≤ n− 1, there holds
n−1∑

i=0

cic
′
i+t ≤ λc

where each subscript is reduced modulo n.

One of the first proposed applications of optical orthogonal codes was to optical

code-division multiple access communication systems where binary sequences with

strong correlation properties are required [1, 3, 5]. Subsequently, OOCs have found

application for multimedia transmissions in fiber-optic LANs [9]. Optical orthogo-

nal codes have also been called cyclically permutable constant weight codes in the

construction of protocol sequences for multiuser collision channels without feedback

[11].

∗ Mathematical Sciences, University of New Brunswick, Saint John, NB., Canada

(talderso@unb.ca), the author acknowledges support from the N.S.E.R.C. of Canada.
†Department of Mathematics, University of Mary Washington, 1301 College Avenue, Trinkle Hall,

Fredericksburg, VA 22401, USA (kmelling@umw.edu), the author acknowledges support by a faculty

development grant from the University of Mary Washington

1



2 T. L. Alderson and Keith E. Mellinger

An (n,w, λa, λc)-OOC with λa = λc is denoted (n,w, λ)-OOC. The number of

codewords is the size of the code. For fixed values of n, w, and λ, the largest size of

an (n,w, λ)-OOC is denoted Φ(n,w, λ). An (n, w, λ)-OOC of size Φ(n,w, λ) is said

to be optimal. From the Johnson bound for constant weight codes it follows that [3]

Φ(n,w, λ) ≤
⌊

1
w

⌊
n− 1
w − 1

⌊
n− 2
w − 2

⌊
· · ·

⌊
n− λ

w − λ

⌋⌋
· · ·

⌋
,(1.1)

Much of the literature is restricted to (n,w, λ)-OOCs. If C is an (n,w, λa, λc)-

OOC with λa 6= λc then we obtain a (perhaps naive) bound on the size of C by taking

λ = max{λa, λc} in (1.1). In [17], Yang and Fuja discuss OOCs with λa > λc and

the following bound is established.

Φ(n, w, λ + m,λ) ≤ Φ(n,w, λ) · (λ + m)(1.2)

The codes we construct in Sections 4.1, 4.2, and 5 have λa < λc. As such the 1.1

seems the only applicable bound. We do however offer some analysis regarding the

possible optimality of our codes.

Let F be an infinite family of OOCs with λa = λc. For any (n,w, λ)-OOC

C ∈ F containing at least one codeword, the number of codewords in C is denoted

by M(n, w, λ) and the corresponding Johnson bound is denoted by J(n,w, λ). F is

called asymptotically optimal if

lim
n→∞

M(n,w, λ)
J(n,w, λ)

= 1.(1.3)

For λ = 1, 2 optimal OOCs are known to exist (see e.g. [3, 4, 13]). There are

very limited examples of such optimal OOCs with λ > 2 (in [12, 13] optimal OOCs

consisting of a single codeword are shown to exist). Our constructions were originally

motivated by the results in [10] where certain families of conics in PG(2, q) are used

to construct (n, q + 1, 2)-OOCs that are close to optimal. We build on the ideas in

[10] and construct several new classes of OOCs based on arcs in finite projective spaces.

2. Preliminaries. As our work relies heavily on the structure of finite projec-

tive spaces, we start with a short overview of the fundamentals of finite projective

geometry. We let PG(k, q) represent the finite projective geometry of dimension k

and order q. Due to a result of Veblen and Young [16], all finite projective spaces of

dimension greater than two are isomorphic up to the order q. The space PG(k, q)

can be modeled most easily with the vector space of dimension k + 1 over the finite
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field GF (q). In this model, the one-dimensional subspaces represent the points, two-

dimensional subspaces represent lines, etc. Using this model, it is not hard to show by

elementary counting that the number of points of PG(k, q) is given by θk,q = qk+1−1
q−1 .

The fundamental theorem of projective geometry states that the full automor-

phism group of PG(k, q) is the group PΓL(k + 1, q) of semilinear transformations

acting on the underlying vector space. The subgroup PGL(k+1, q) ∼= GL(k+1, q)/Z0

(where Z0 represents the center of the group GL(k+1, q)) of projective linear transfor-

mations is easily modeled by matrices and will be useful in our constructions. Another

property that we rely on is the principle of duality. For any space S = PG(k, q), there

is a dual space S∗ whose points and hyperplanes (subspaces of dimension k − 1) are

respectively the hyperplanes and points of S. For any result about points of S, there

is always a corresponding result about hyperplanes of S∗. More generally, for any

result dealing with subspaces of S, replacing each reference to a subspace PG(m, q),

m < k, with a reference to the subspace PG(k −m − 1, q) yields a correspond dual

statement of S∗ that has the same truth value. For instance, a result about a set of

points of PG(k, q), no three of which are collinear, could be rewritten dually about

a set of hyperplanes of PG(k, q), no three of which meet in a common subspace of

dimension k − 2.

3. OOCs from lines of PG(k,q). In [3] Chung, Salehi, and Wei provide

a method for constructing (n,w, 1)-OOCs using lines of the projective geometry

PG(k, q). Briefly, let ω be a primitive element of GF (qk+1). The points of Σ =

PG(k, q) can be represented as ω0 = 1, ω, ω2, . . . , ωn−1 where n = qk+1−1
q−1 . Hence, in

a natural way a point set A of PG(k, q) corresponds to binary n-tuple (or codeword)

(a0, a1, . . . , an−1) where ai = 1 if and only if ωi ∈ A.

Denote by φ the collineation of Σ defined by ωi 7→ ωi+1, a singer cycle acting on

Σ. The map φ acts transitively on the points (and dually on the hyperplanes) of Σ.

If A is a point set of Σ corresponding to the codeword c = (a0, a1, . . . , an−1), then φ

induces a cyclic shift on the entries of c.

For each line ` of Σ, consider the orbit O` under φ. If O` is a full orbit (has size

n) then a representative line and corresponding codeword is chosen. Short orbits are

discarded. Let L(k, q) represent the cardinality of this set of chosen lines. Two lines

of Σ intersect in at most one point and each line contains q +1 points. It follows that

the codewords satisfy both λa ≤ 1 and λc ≤ 1 and by counting the number of full

orbits under φ the following is obtained.
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Theorem 3.1. For any prime power q and any positive integer k, there exists

an (optimal) (θk,q, q + 1, 1)-OOC consisting of L(k, q) =
⌊

qk−1
q2−1

⌋
codewords.

4. OOCs from arcs in PG(k,q). An n-arc in PG(k, q) is a collection of n > k

points such that no k + 1 are incident with a common hyperplane. It follows that if

K is an n-arc in PG(k, q) then no k + 1 points of K lie on a hyperplane, no k lie on a

(k − 2)-flat,..., no 3 lie on a line. An n-arc is called complete if it is not contained in

an (n + 1)-arc.

For given k and q, let m(k, q) denote the maximum value of n for which an n-arc

exists in PG(k, q). Then m(k, q) = k + 2 for q ≤ k + 1. In homogeneous coordinates,

the points (1, 0, . . . , 0), (0, 1, 0, . . . , 0), ... ,(0, . . . , 0, 1), and (1, 1, . . .

, 1) constitute such an arc. Hence, for q ≤ k + 1, every point in PG(k, q) is a linear

combination of at most k of these k +2 points. In PG(2, q), a (non-degenerate) conic

is a (q + 1)-arc and elementary counting shows that this arc is complete when q is

odd.

When q is even, one can add one additional point to each conic, the so-called knot

where all of the tangent lines intersect. The resulting (q +2)-arc is called a hyperoval

and is necessarily complete. Conics are a special case of the so called normal rational

curves. A rational curve Cn of order n in PG(d, q) is a set of points

{P (t) = P (g0(t0, t1), . . . , gd(t0, t1)) | t0, t1 ∈ GF (q)}

where each gi is a binary form of degree n and the highest common factor of

g0, g1, . . . , gd is 1. The curve Cn may also be written

{P (t) = P (f0(t), . . . , fd(t)) | t ∈ GF (q) ∪ {∞}}(4.1)

where fi(t) = gi(1, t).

Definition 4.1. A normal rational curve (NRC) in PG(d, q), 2 ≤ d ≤ q − 2 is

a rational curve (of order d) projectively equivalent to the set of points

{(1, t, . . . , td) | t ∈ GF (q) } ∪ {(0, . . . , 0, 1)}.

It is well-known that an NRC is, in fact, a (q + 1)-arc. When stated in terms

of arcs, the Main Conjecture (MC) for MDS Codes, always taking q > k + 1, is the

following: m(k, q) = q + 2 for k = 2 and k = q− 2 both with q even, q + 1 in all other

cases. The main conjecture has its roots in a problem first posed over 50 years ago
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by B. Segre. The MC has not been proved in general. It has been verified in many

cases. See [6] for a recent survey of results relating to the MC.

Definition 4.2. Let π = PG(k, q). A t-family F of m-arcs in π is a collection

of m-arcs mutually meeting in at most t points.

Theorem 4.3. Let F be a t-family of m-arcs in π = PG(k, q). Let µ =

max{k, t}. Then there exists a
(

qk+2−1
q−1 ,m, k, µ

)
-OOC C consisting of |F| code-

words.

Proof. Consider π = PG(k, q) as embedded in Σ = PG(k + 1, q) and let ω be a

primitive element of GF (qk+2). Let C be t-family of m-arcs π. Identify each arc in

C with the corresponding codeword of length qk+2−1
q−1 and weight m. As in Section

3, let φ : ωi 7→ ωi+1 be a singer group acting on Σ. Let K be an arc in C. The

auto-correlation λa is the maximum number of points in the intersection of φi(K) and

φj(K) where i 6= j. Since φ is a collineation of Σ, φi(K)∩φj(K) ⊂ φi(π)∩φj(π). As φ

acts regularly on the hyperplanes of Σ, φi(π) 6= φj(π) and φi(π)∩φj(π) is necessarily

a (k− 1)-flat. It follows that λa is bounded above by the maximum intersection of an

arc in PG(k, q) and a (k− 1)-flat, hence λa ≤ k. Now let K and K′ be distinct arcs in

C. The cross-correlation λc is the maximum number of points in the intersection of

φi(K) and φj(K′). If i 6= j then, as above, this number is at most k. However if i = j

then φi(K) and φj(K′) are in a common hyperplane of Σ and can therefore share as

many as t points. It follows that λc = max{k, t}.
Using the notation of the previous proof, a line of Σ intersects any member of F in

at most 2 points. Hence, adding the L(k, q) codewords from Theorem 3.1 to C will not

violate either correlation requirement. However, each line gives a codeword of weight

q + 1 whereas the weight of C is m. This poses no problem if m ≤ q + 1. Moreover, if

m ≤ q+1 the points of each of the L(k, q) lines may arbitrarily subdivided into b q+1
m c

disjoint subsets (or more generally, into subsets mutually intersecting in at most k

points) of size m. Each of the resulting b q+1
m c · L(k, q) subsets then corresponds to a

codeword of C. This gives the following.

Corollary 4.4. Let F be a t-family of m-arcs, m ≤ q + 1 in π = PG(k, q). Let

µ = max{k, t}. Then there exists a
(

qk+2−1
q−1 ,m, k, µ

)
-OOC consisting of

|F|+ ⌊
q+1
m

⌋ · L(k, q) codewords.

4.1. An (n,w, λ, λ + 2) construction using Normal Rational Curves. The

following is a well known property of NRCs (see e.g. [15]).

Theorem 4.5. A (d+3)-arc in PG(d, q) is contained in a unique normal rational

curve.
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If C is an NRC in PG(d, q) then the subgroup of PGL(d + 1, q) leaving C fixed is

(isomorphic to) PGL(2, q) (see [7] Theorem 27.5.3]) . It follows that if ν(d, q) denotes

the number of distinct normal rational curves in PG(d, q) then

ν(d, q) =
|PGL(d + 1, q)|
|PGL(2, q)| =

(qd+1 − 1)(qd+1 − q) · · · (qd+1 − qd)
(q2 − 1)(q2 − q)

(4.2)

Theorem 4.6. For any prime power q and for each k ≥ 2 there exists a(
qk+2−1

q−1 , q + 1, k, k + 2
)
-OOC consisting of ν(k, q) + L(k, q) ≈ qk2+2k−3 codewords.

Proof. This follows immediately from Corollary 4.4 and Theorem 4.5.

Remark 4.6.1.

1. Let M( qk+2−1
q−1 , q + 1, k, k + 2) denote the size of the codes constructed in

Theorem 4.6. We compare the size of our codes to other codes with similar correlation

parameters in order to obtain some insight on the optimality of our codes. On the one

hand (as one might expect), we have

M

(
qk+2 − 1

q − 1
, q + 1, k, k + 2

)
< J

(
qk+2 − 1

q − 1
, q + 1, k + 2

)
≈ qk2+2k−1

while on the other hand,

M

(
qk+2 − 1

q − 1
, q + 1, k, k + 2

)
> J

(
qk+2 − 1

q − 1
, q + 1, k + 1

)
≈ qk2+k−1

Also, from the bound of Yang and Fuja (1.2) it follows that if qk > k+2
q4 then

M

(
qk+2 − 1

q − 1
, q + 1, k, k + 2

)
> Φ

(
qk+2 − 1

q − 1
, q + 1, k + 2, k + 1

)
.

Thus, we have a strong indication that the codes constructed in Theorem 4.6 are quite

robust. Moreover, we see that for the code parameters specific to the theorem and for

q sufficiently large

Φ(n,w, λ + 1, λ) < Φ(n,w, λ− 1, λ + 1) .

2. Let C be an
(

qk+2−1
q−1 , q + 1, k, k + 2

)
-OOC constructed as in the theorem and

let Σ = PG(k + 1, q). Let c1, c2 ∈ C be two codewords. By the construction it follows

that there is at most one cyclic shift of c2, say c′2 for which the cross correlation of

c1 and c′2 is greater than k (this will only occur if the NRCs C1 and C2 corresponding

respectively to c1 and c′2 are contained in a common hyperplane of Σ and intersect in

more than k points).
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4.2. An (n,w, λ) construction from m-arcs. In [10], Miyamoto, Mizuno, and

Shinohara prove the existence of an asymptotically optimal family of (n,w, 2)-OOCs.

Their proof utilizes a clever construction of a large 2-family of (q+1)-arcs in PG(2, q).

The construction relies heavily on the fact that the (q + 1)-arcs concerned are conics

(i.e. NRCs). In what follows we provide a construction for large families of arcs in

PG(k, q), k ≥ 2. For k = 2 the corresponding OOCs form an asymptotically optimal

family. Also, for k = 2 our code parameters match those of [10] for q even (see

Corollary 4.10). Our construction is quite general in that it holds for arbitrary arcs,

that is to say we do not rely on any correspondence between the arcs involved and

algebraic curves. As such, our construction holds for arcs of size larger than q + 1 in

PG(d, q) (which necessarily do not correspond to NRCs).

Theorem 4.7. Let π = PG(k, q). If π contains an m-arc, then π contains a

(k + 1)-family F of m-arcs where |F | = qk+1 − qk. Moreover, there exists a point P

incident with each member of F . Consequently, there exists a k-family consisting of

qk+1 − qk distinct (m− 1)-arcs.

Proof. We work with the dual. Let K = {λ1, λ2, . . . , λm} be a dual m-arc in π.

Consider π as embedded in Σ = PG(k+1, q) and let Σ∗ = Σ\π be the associated affine

space. Let σ be any hyperplane of Σ on λm other than π. For each point P ∈ Σ∗ \ σ

denote by φP the projection map taking π to σ through P . Each such φP fixes λm

and carries K to a dual arc φP (K) in σ (containing λm). Let S = {φP (K)|P ∈ Σ∗ \σ}
be the set of qk+1 − qk dual m-arcs in σ obtained by projection. We claim that apart

from λm no two dual arcs S share as many as k + 1 common members. Let λ 6= λm

be a member of φP (K) and let ψ = λ ∩ λm. Other than λm there is precisely one

member of K, say λ′ containing ψ (at most two members of K are incident with a

given (k − 2)-flat). So 〈P, λ〉 = 〈P, λ′〉 = 〈λ, λ′〉. It follows that if λ ∈ φQ(K) with

P 6= Q then the line 〈P, Q〉 intersects π in a point of λ′. Hence, if φP (K) and φQ(K)

have k + 1 common members other than λm, then the point at which the line 〈P,Q〉
intersects π will be incident with k + 1 members of K, a contradiction. Hence, S is a

(k + 1)-family of m-arcs where |S| = qk+1 − qk. By removing λm from each member

of S we obtain the k-family of dual (m− 1)-arcs as required.

Restricting to k = 2 we can give explicit coordinates for constructing the q3 − q2

conics of the projective plane described in Theorem 4.7. These coordinates are derived

directly from the projection construction when q is odd. Let (x, y, z) represent the

homogeneous coordinates for a projective point of π. Then, for fixed a, b, c ∈ GF (q),

c 6= 0, let Ca,b,c = {(1, a− cx2, b− cx) : x ∈ GF (q)} ∪ {(0, 1, 0)}. One can easily show
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that Ca,b,c defines a conic of π. Varying a, b and c gives a family of q3− q2 conics that

have the desired intersection property, and that meet in the point (0, 1, 0). As c 6= 0,

we have exactly q3 − q2 conics of this form. These coordinates generate a similar set

when q is even.

Lemma 4.8. If there exists an m-arc in PG(k, q), then there exists a (θk+1,q,m− 1, k)-

OOC C where

|C| =




qk+1 − qk + b q+1
m−1c · L(k + 1, q) m ≤ q + 2

qk+1 − qk otherwise.

Proof. Follows immediately from Theorem 4.7 and Corollary 4.4.

An NRC in PG(d, q) is a (q + 1)-arc and (q + 2)-arcs are known to exist in

PG(2, 2t). This gives us the following two corollaries.

Corollary 4.9. For q a prime power and k ≥ 2 there exists a (θk+1,q, q, k)-OOC

consisting of qk+1 − qk + L(k, q) codewords.

Proof. Normal rational curves provide (q +1)-arcs in PG(k, q), k ≥ 2. The result

follows from Lemma 4.8.

Thus, for each k ≥ 2 we have (via Corollary 4.9) an infinite family of OOCs.

Moreover, for k = 2 it is easily verified that the family is asymptotically optimal.

When k = 2 and q is even the fact that hyperovals exist in PG(2, q) gives the following

corollary yielding codes with parameters matching those of Miyamoto and Mizuno

[10].

Corollary 4.10. For q = 2t there exists a
(

q4−1
q−1 , q + 1, 2

)
-OOC consisting of

q3 − q2 + q codewords.

4.3. An (n,w, λ) Construction from (k+1)-arcs in PG(k,q). As observed

above, k + 2 arcs exist in PG(k, q) for every k. Denote by N (k + 1, q) the family of

all (k +1)-arcs in PG(k, q). As N (k +1, q) is a k-family of arcs in PG(k, q), Theorem

4.3 gives the following.

Theorem 4.11. For q a prime power and k ≥ 1 there exists a (θk+1,q, k + 1, k)-

OOC consisting of |N (k + 1, q)| codewords.

Corollary 4.12. For q a prime power and 1 ≤ k ≤ q there exists a (θk+1,q, k +

1, k)-OOC consisting of |N (k + 1, q)|+
⌊

q+1
k+1

⌋
· L(k, q) codewords.

Observe that the Johnson bound:

J(θk+1,q, k + 1, k) =
(θk+1,q − 1)(θk+1,q − 2) · · · (θk+1,q − k)

(k + 1)!
≈ q(k+1)k

(k + 1)!
(4.3)

By counting ordered (k + 2)-tuples (P1, P2, . . . , Pk+1,K) where K is a (k + 1)-arc

in PG(k, q) and P1, P2, . . . , Pk+1 are the points in K we get:



PREPRINT - Constructions of OOCs from finite geometry 9

|N (k + 1, q)| = θk,q (θk,q − 1) (θk,q − θ1,q) (θk,q − θ2,q) · · · (θk,q − θk−1,q)
(k + 1)!

≈ qk(k+1)

(k + 1)!
(4.4)

It follows that the family of codes constructed as in Theorem 4.11 and Corollary

4.12 are asymptotically optimal.

5. An (n,w, λ, λ + 1) construction from arcs in PG(k,q2). Since GF (q) is

a subfield of GF (qn) for n > 1, the projective space PG(k, q) is naturally embedded in

PG(k, qn) once the coordinate system is fixed. In particular, any PG(k, q) embedded

in PG(k, q2) is called a Baer subspace (BSS) of PG(k, q2) (for an introduction to Baer

subspaces see [2] or [14]). A frame of a k-dimensional projective space is a set of k+2

points of which any k+1 points are a basis, that is, a (k+2)-arc. It is well known that

a Baer subspace of PG(k, q2) is uniquely determined by a frame. Denote by B(k, q2)

the number of Baer subspaces of PG(k, q2). Then by counting ordered (k + 2)-tuples

or otherwise (see e.g. [14]) we have

B(k, q2) = q
k(k+1)

2

k+1∏

i=2

(q i + 1) ≈ qk2+2k.(5.1)

Theorem 5.1. If Π = PG(k, q) contains a (k+1)-family F of m-arcs, then there

exists a (k + 1)-family S of m-arcs in Σ = PG(k, q2), where |S| = B(k, q2) · |F|.
Proof. Let Πi, 1 ≤ i ≤ B(k, q2) denote the baer subspaces of Σ. By assumption,

for each j, 1 ≤ j ≤ B(k, q2), there exists a (k + 1)-family Fj of m-arcs in Πj with

|Fj | = |F|. Let

S =
B(k,q2)⋃

j=1

Fj .

As a Baer subspace is uniquely determined by a frame, two distinct BSSs cannot share

a (k + 2)-arc. It follows that S is a (k + 1)-family of m-arcs with |S| = B(k, q2) · |F|.

Theorem 5.2. In PG(k, q) there exists a (k + 1)-family F of q-arcs where

|F | = qk−1 ·
k−1∏

i=1

(qk+1 − qi)

Proof. Denote by XP the number of NRCs through an arbitrary fixed point

P ∈ Σ = PG(k, q). By counting ordered pairs (C, Q) where C is a NRC in Σ and Q is
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a point of C we get

ν(k, q)(q + 1) =
(

qk+1 − 1
q − 1

)
·XP ,

which gives

XP = qk−1 ·
k−1∏

i=1

(qk+1 − qi).

Hence, removing P from each of the XP NRCs through P yields a (k + 1)-family F
of q-arcs.

Corollary 5.3. For k > 1 and q > k a prime power, there exists a

( qk+2−1
q−1 , q, k, k + 1)-OOC consisting of

B(k, q2) ·XP + L(k, q2) · B(1, q2) =

q
k2+3k−2

2
(
qk+1 + 1

) k−1∏

i=1

[(
qk+1 − qi

) (
qi+1 + 1

)]
+

⌊
q2(k+1) − 1

q4 − 1

⌋
(q3+q2) ≈ q2k2+3k−2

codewords.

Proof. Fix k > 1 and q > k and let Σ = PG(k + 1, q2). From Theorem 5.1

and Theorem 4.3 there exists a ( qk+2−1
q−1 , q, k, k + 1)-OOC C consisting of B(k, q2) ·

XP codewords. Let ` be one of the L(k + 1, q2) lines in Σ with full orbit. As a

frame uniquely determines a Baer subspace, it follows that any two Baer sublines of `

intersect in at most two points. Thus, as in Corollary 4.4 we may add L(k, q2)·B(1, q2)

codewords to C. This gives a code of size B(k, q2) ·XP + L(k, q2) · B(1, q2).

Remark 5.3.1. Let M(n,w, k, k + 1) be the size of the codes constructed as in

the Theorem. Note that J(n, w, k + 1) ≈ q2k2+3k and J(n,w, k) ≈ q2k2+2k so though

the codes constructed in the Corollary are not asymptotically optimal with respect to

the Johnson bound, they appear to be of a competitive size. We also point out that

from Equation 1.2 it follows that M(n,w, k, k + 1) > Φ(n,w, k + 1, k) for k > 2.

Corollary 5.4. For q a prime power there exists an ( q8−1
q2−1 , q + 1, 2, 3)-OOC

consisting of B(2, q2) · (q3− q2) +L(3, q2) · B(1, q2) codewords. For q = 2t there exists

an ( q8−1
q2−1 , q+2, 2, 3)-OOC consisting of B(2, q2) · (q3−q2) = q3(q2 +1)(q3 +1)(q3−q2)

(in this case, we cannot include the lines).

Proof. (q + 1)-arcs (conics) exist in PG(2, q) and if q is even then (q + 2)-arcs

(hyperovals) exist. Appealing to Theorems 4.7 and 5.1 the first result follows from

Theorem 4.3 and the second from Corollary 4.4.
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5.1. Codes from Baer Subspaces. One last consideration for constructing

larger weight codes is to use Baer subspaces of PG(k, q2) themselves to correspond

the codewords. The correlation numbers, in this case, are functions of q (for k > 1)

which is probably not desirable. We provide the example nonetheless. Regarding the

maximal intersection of two BSSs we have the following result (see [8], Theorem 1.3).

Theorem 5.5. Let B1 and B2 be two Baer subspaces of PG(k, q2). Then

|B1 ∩B2| ≤ θk−1,q + 1

This gives us the following.

Theorem 5.6. For q a prime power there exists a
(
θk+1,q2 , θk,q, θk−1,q, θk−1,q + 1

)
-

OOC consisting of B(k, q2) codewords.

Proof. As in the previous sections, embed Π = PG(k, q2) into Σ = PG(k + 1, q2)

and consider the set of all BSSs in Π. Proceed with a construction as in Theorem

4.3 with BSSs in place of arcs. The auto-correlation, λa, is bounded above by the

maximum intersection of two Baer subspaces lying in different hyperplanes of Σ. As

two such hyperplanes meet in a (k−1)-flat of Σ, this intersection is bounded by θk−1,q.

For the cross-correlation λc, we need to consider the intersection of two BSSs lying in

the same hyperplane of Σ, by Theorem 5.5 we have λc ≤ θk−1,q + 1.

6. Conclusion. We have exhibited several classes of optical orthogonal codes

generated by the same basic ideas in finite projective spaces. Our codes are derived

from a nice geometric construction of sets of objects with small intersections sizes.

Our hope was to find more examples of (asymptotically) optimal codes. Perhaps more

research into the packing of various geometric objects into projective spaces, subject

to a small intersection condition, may lead to further examples of optimal OOCs. We

have exhibited constructions of code families wherein the auto-correlation is smaller

than the cross-correlation. Perhaps these constructions will serve to motivate new

investigations of upper bounds on Φ(n,w, λa, λc) with λa < λc.
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