```
IN THE COURT OF QUEEN'S BENCH OF NEW BRUNSWICK
TRIAL DIVISION
JUDICIAL DISTRICT OF FREDERICTON
BETHEEN;
```

```
HER MAJESTY THE QUEEN
    - and -
    ALLAN JOSEPH LEGERE
```

```
VOIR DIRE held berore Honourable Mr. Justlce
David M, Dickson, at Burton, New Brungwick,
on the 27th day of May, A. D. 1991.
```


APPEARANCES

John Walsh, Esq., and J
Anthony Allman, Esq.,) for the Crown.
Weidon Furlotte, Esq., and)
Michael A. A. Ryan, Esq., for the Accuaed.

```
                                    VERNA PETERSON
                                    COURT REPORTER

\section*{VOLUME XIII - VOIR DIRE \\ May 27, 199:.}
\(\underline{I} \underline{N} \underline{E} \underline{X}\)
\begin{tabular}{lccc} 
NAME & DIRECT & CROSS & REDIRECT \\
Dr.William Shields & 1 & 65 & 169
\end{tabular}

\section*{LIST OF EXHIBITS}
NO. ..... PAGE
VD-116 C.V. - Dr. William Shields ..... 1
VD-117 Paper - "Problems with Forensic DNA ..... 7 Typing as Evidence in Criminal Procedinga"
VD-118 Graph ..... 32
VD-119 ..... 32
VD-120 " ..... 33
VD-121 n ..... 36
VD-122 n ..... 37
VD-123 ..... 38
VD-124 ..... 38
VD-125 ..... 38
VD-126 ..... 39
VD-127 ..... 39
VD-128 ..... 39
VD-129 ..... 3.9
VD-130 ..... 39
VD-131 ..... 40
VD-132 ..... 40
VD-133 ..... " ..... 41

NO.
\begin{tabular}{lll} 
VD-134 & Graph & 42 \\
VD-135 & " & 42 \\
VD-136 & Afridavit of Dr. Shields - & 47 \\
& & \\
VD-137 & Xerox Copy of Transparency & 61
\end{tabular}

\title{
(VOIR DIRE - R. VS. ALLAN JOSEPH LEGERE)
}
(COURT RESUMES RT 9:30 a.m., MAY 27, 1991)
(ACCUSED IN DOCK.)
```

THE COURT: Now we're resuming the voir dire, and the crown
When last we met on the l7th had concluded its case
on the DNA aspect of the volr dire and now the
defence were going to call a witness, I belleve.
Mr. Furlotte?
MR. FURLOTtE: Yes, My Lord, call Dr. William Snields.
DR. KILLIAM SHIELDS, called as a witness, being
duly sworn, testified as rollows:
DIRECT EXAMINATION BY MR. FURLOTTE:
MR. FURLOTTE: My Lord, if I may with the Crown's permission
enter Dr. Shields' C.V. as an exhibit?
MA. WALSH: I have no objection.
THE COURT: VD-116. As I have explained to other witnesses
the designation of our exhibits as VD doesn't have
any medical significance. It refers to the words
voir dire.
MR. FURLOTTE: Dr. Shields, would you happen to have an
extra copy of your C.V. In your bríefcase, by any
chance?
A. In my briefcase.
Q. I can give this to the Crown prosecutor. Dr. Shields
how old are you at this time?
A. I have to do some calculations - 42, I believe,
maybe 43.
O. And where are you presently employed?
A. I'm employed at the State Unjversity of New York,
College of Environmental Science and Forestry in
Syracuse.

```
```

-2 - Dr. Shields - Direct
(Voir Dire)
Q. And what is your position there?
A. I'm a professor of biology.
Q. My Lord, if I may go through some of Dr- Shields'
C.V. with him?
THE COURT: Yes, sure.
Q. Dr. Snields, I see for your degrees that you
received an A. B. at LIvingston College, Rutsers
University, New Brunswick, New Jersey, in Biology
with Distinction in May of 1974?
A. That's correct.
Q. And you received an M.S., Master of Science, I would
assume?
A. That's correct.
Q. At Ohio State University, Columbus, Ohio, in Zoology,
in June, 1976?
A. That's correct.
Q. And you received a Ph.D. at Ohio State University,
Columbus, Ohio, in Zoology, in June, 19997
A. Yes.
Q. Ano dissertation with philopatry, inbreeding and
adaptive advantages of sex?
A. That's correct.
Q. Would that Ph.D. have anything to do with population
genetics?
A. I hope so. It's probably about four-fifths
population and ecological genetics.
Q. Doctor, I see in professional experience you have
1isted as a teaching associate at Ohio State
University in general biology, general zoology,
ethology, animal behaviour, ornithology and evolution?
A. That's correct.
Q. That Has from 2974 to 2979?

```
```

- 3 - Dr. Shields - Direct
(Voir Dire)

```
A. Yes.
Q. And again you were an instructor at wilmington
    College, Wilmington, ohio, topics in biology,
    vertebrate biology, laboratory in vertebrate
    anatomy.
A. Yes.
Q. Lecturer at Ohio State University at Lima, Ohio,
    in general biology (Majors: lecture and lab), and
    again general biology (Non-majors: lecture)?
A. Yes.
Q. And in 1988 you were professor and assigtant
    professor in 1979 to 84 and associate professor
    from 1984 to ' 88 , State University of New Brunswick,
    College of Environmental Science and Forest
    Syracuse?
A. I hope it's the State University of New York.
    Everything else you sald was correct.
THE COURT: It says New York.
Q. Doctor, I see also in your publications that you've
    published a book?
A. Yes, it was based on my dissertation and it has
    almost the same title as my dissertation, so it's
    again mostly population and ecological generics
Q. And thls was in l982?
A. That's when the book was published, yes.
Q. Published by State University of New York Press,
    Aldany, New York?
A. Yes.
Q. And was that 245 pages?
A. Mm-nmm.
Q. I also see, Doctor, that you have to your credit a
    number of papere, roughly 36 in number?
A. Thirty-flve papers, I think, and one book, yes.
Q. And do any of these have to ofal with what material, population genetics?
A. About half of them deal with population genetics or ecological genetic issues.

Doctor, have you ever been an invited lecturer on population genetics, and where?
A.

Yes, I have, in many different places. Probably the most fun place was the University of Hawail, but I've also been invited to speak on such issues at places like Harvard, the University of California at Davis or Santa Barbara, University of Arizons, University of Western Ontario and at Queens in Kingston. Many other places as well.

Queens at Kingston, and that's Ontario, Canada? Yes, it is. Doctor, I see some of your papers or lectures were what, in inbred populations? I do a lot of writing, reading, and thinking about inbreeding in its general sense. It doesn't necessarily mean the way most people think of it in terms of incest, but rather, population structure. Population structure. Inbreeding is not another term for incest?

Incest is a term for one kind of inbreeding. And, Doctor, have you testified in court before as an expert witness, and in what areas?

Yes, I have. I don't know enough about what this admitted as an expert is but \(I\) have testiried in a number of courts about population genetics issues, molecular genetics issues, and the statistical
Issues which are really the same as the population
```

- 5 - Dr. Shields - Direct
(Voir Dire)

```

\[
\begin{aligned}
& \text { - } 6 \text { - Dr. Shields - Direct } \\
& \text { (Voir Dire) }
\end{aligned}
\]
```

MR. FURLOTTE: I'd offer this as an exhibit, My Lord.
Mr. WalSH: I would have liked -
MR. FURLOTIE: I'll give you a copy.
MR. WALSH: I see it's about an inch thick. I would have
liked to have been at leagt shown it before he
tendered it into evidence, I'm going to consent to
this. He's asking me to consent to this and I
haven't read it. I'm at a very grave disadvantage.
I don't want to interfere but I'd like to know
what's going in.
TBE COURT: As in the case of some of the earlier papers
that were put into evidence I will admit it but
I'm admitting it simply as evidence that a paper
has been tendered. It's not proof or the contents
Of the paper. It may perhaps provide the roundation
for some of the examination. What can you do to
get Mr. Walsh provided with a copy, Mr. Furlotte?
MR. EURLOTTE: I have an extra copy I can give him. I just
received this myself this weekend.
THE COURT: Well, that's understandable, perhaps, but if
you'd see that as early as posaible, like later
today, at noon-hour perhapa, could he get a copy
of that?
Mr. FURLOTTE: At break-time this morning I can give Mr.
Walsh a copy.
THE COURT: Yes, and if there are matcers in that paper
that you want to cross-examine on, Mr. Walsh, if
It pertained to the question of expertise you might
want to do it when that motion is made that the
wituess be declared an expert, or very possibly -
it's more probable that it could be done at the end
of the direct testlmoay, so we'll mark that as

```
```

 Exhibit VD-11T. Two parts, are there, and are chey
 all part of the same paper?
 Yes, it's the text and the figures, Your Honour.
 MR. WALSH: What is the title?
THE COURT: And the title is what?
MR. FURLOTTE: The title is "Probleme with Forensic DNA
Typing as Evidence in Criminal Proceedings", by
William M. Shlelds.
THE couRT: Make it one exhibit, the one number, VD-llT.
MR. FURLOTTE: Dr. Shields, would it be safe to say that
the Academy of National Science considered you to
be an expert in population genetics when they asked
you to submit the paper?
A. That's a gtrange question to answer, for me to
answer. What I would say is that based on the
experience that I had with rorensic DNA typing
based on court room experience and based on my
research in population genetics they rhought it
might be useful for them to see my thoughts on the
process and the problems. It's not saying they
agreed or disagreed with any of it. I wom't know
that until I see what the report says.
MR. FURLOTTE: My Lord, at this time I'd like to move to
have Dr. Shields declared as an expert witness in
population genetics.
THE COURT: Have you any questions, Mr. Walsh?
MR. WALSH: No, My Lord, I have no objections.
THE courT: Well, I will declare the witness, then, to be an
expert in the field of population genetics.
MR. FURLOTTE: And also in molecular genetics, My Lord.
THE COURT: Any questions about that: Mr. Walsh?

```
```

- 8 - Dr. Shields - Direct
(Voir Dire)

```
```

MR. WALSH: No, My Lord, I nave no objection.
MR. FURLOTTE: And as an expert witness in statistics.
MR. WALSH: I have an objection to that, My Lord, yes.
Dr. Shields has pointed out that - my understanding
of his testimony is that the statistics essentially
form part of the umbrella of population genetics
and I don't see why there should be a separate
designation for that. It all comes under the
umbrella of population genetics.
THE COURT: Aren't we perhapg becoming a little too refined,
Mr. Furlotte? It's not going to confine the
scope of his evidence if we omit statigtics, surely.
Whether he's an expert in statistics or not is
important only insofar as his expertise in that
substrata, sub-field, or whatever you want to call
it, that extends to population genetics. Ir he's
an expert in population genetics we're going to hear
his evidence on statistics anyway, right?
MR. FURLOTTE: Whatever the court desires.
THE COURT: We'll qualify the witness as an expert in
population genetics and molecular genetics.
MR. FURLOTTE: My Lord, Dr. Shields has never had the
opportunity to view the original autorads and I
would request at this time that Mr. Bowen provide
the originals for the availability of Dr. Shields.
MR. WALSH: We've always cold Mr. Furlotte, and the very
reason that Dr. Bowen is down here is that if he
wishes to see the autorads it doesn't require an
order or the Court. Dr. Eowen is here with the
originals and he's prepared to in the pregence or
the doctors keep continuity of the originals, he's
prepared to have the doctor review them. I nope

```
```

 - 9 - Dr. Shields - Direct
 (Volr Dire)
 Mr. Furlotte is not now going to ask the doctor to
 review them on the Court's time.
 THE COURT: What did you have in mind here, Mr. Furlotte?
They are available in court. I think the Crown
hag made clear that they are available at all times,
but What does -
MR. FURLOTTE: Well, My Lord, the Crown used the originals.
Although they didn't put the originals into
evidence they still used the originals for comparisan
purposes.
THE COURT: Hell, they're avallable ir the witness wants to
refer to those or if he wants to look at them, but
I mean, you're not going to spend hours with the
witness examining the autorads now, are you?
MR. FURLOTTE: We're awful concerned about time, My Lord.
No, I have no intention of spending hours but -
THE coURT: Yes, but it could be done outside the Court's
time. As the expression, the Court's time, as Mr.
Walsh has used, is fairly important. Well, anyway,
What do you want?
Mr. PURLOTTE: My Lord, I'd llke Dr. Shields to be able to
compare the original autorads as to the quality or
the autorads for each probe, and it's a matter of
just putting them on the light box and saying that
eicher yes, they are good quality, poor quality, or -
THE COURT: Well, Mr. Walsh, you have no objection,
presumably, to that?
MR. WALSH: As I indicated, My Lord, I have no objection to
Dr. Shields looking at the original. I think the
originals would be something he would want to see.
I just didn't think that - I thought perhaps we
could do this outside the actual court roon time to

```
```

- 10 - Dr. Snields - Direct
(Voir Dire)

```
allow Dr. Shields in privacy to go through with
these things in a wuch easier fashion than \(I\) would think his original look through it at this time. It just seems to me a waste of time but if that's the way he wants to proceed, then I'm -

THE COURT: Yes, but Mr. furlote now has in wind the actual evidence or the actual testimony dealing with the autorads, is that what you have in oind?
mr. furlotte: yea, My Lord.
THE COURT: All right. Well, where are they?
Mr. KALSH: Dr. Bowen has them, My Lord.
Mr. FURLOTTE: Maybe if I had Dr. Bowen's - the Crown Prosecutor could stand here and give Dr. Shields the autorads which I will refer to, it's easier ror hle to find them than myself.

MR. WALSH: Could I make a suggestion, My Lord? Couid perhaps we have a recess and allow Dr. Shields and Dr. Bowen to do it in a confined setting, so to speak, where there's not a whole lot of people watcining them and the pauses and the -

THE COURT: Well, what you contemplate and what I foresee is that Dr. Shields is going to want to look at these things privately here for a few minutes at least before he testifies as to their nature and so on, whatever questions he's asked. Perhaps we should have a - Dr. Shields, may I ask you this, what do you fant to do with these autorads before you're asked questions about them? Do you want to see them or examine them, or perhaps if it isn't necessary we can go right along.
A. I would just want to confirm. I've seen copies of the autorads and usually they are satisfactory, and
```

 all I would want is just a rew minutes to conrirm
 that the originals tell me the same story as the
 coples did, and it would only take a couple of
 minutes if you'd want to do a recess, Your Honour.
 THE couRT: We needn't bother with a recess, let's do it
right here and we'll take the time.
MR, FURLOTTE: My Lord, I'm not worried if Dr. Shields
confirms the position of the Crown. As I stated
earlier, I'm just seeking the truth in these matters
and if Dr. Shieids' opinion supports the Crown, then
so be it.
(DR. SHIELDS VIEKING AUTORADS.)
MR. FURLOTTE: Dr. Shields, you've compared the originals
with the coples that you observed in the past?
A. Yes,
Q. And how wowld they compare?
A. The same sets of information are available in both
the copies and the originals. The copies were well
made and thererore I could read them about the same
as this, I don't see anything different between the
originals and the copies. The originals are always
a bit cleaner and a bit easier to interpret, but
not in this case exceedingly so.
O. Now, Doctor, I understand you testified in the
Bourguignon cage which the R.C.M.P. were involved?
A. Yes,I did.
Q. And they had autorads in that case that you'be
observed?
A. Yes, they did.

```
```

- 22 - Dr. Shields - Direct
(Voir Dire)

```
Q.
A.
Q. The quality of the autorads.
A. You'd still have to tell me what you mean by quality for me to answer that.
Q.
A.
Q.

And how would you compare the quality or these test resulta with the test results in the Bourguignon case?

What do you mean by quality? To be able to read them, I suppose, without difficulty.

I think what you're getting at is that the autorads In the Bourguignon case were a little bit cleaner than the autorads in this case. The autorads in the Bourguignon case were, I think I testified, the beat I've seen, literally. These are probably closer to the average that you see in forensic cases where there are some minor glitches and problems, but they don't have any serious impact on interpretation. Dirtier, meaning that there are extra bands that are not - they're obviously not the bands that you're most interested in, that they come from either degradation or partial digestion in some cases, or In some cases you don't wash the probe off completely, and that sort of thing happens in a standard way every now and then so that you end up with smokier autorads or lanes that are a little bit wore smoky. O.K., Doctor, what I would like you to do in this cage 1 s I would like you to compare probe D16S85, the original autorad, with the autorads of the other probeg to see if there's any significant difference in the intensity of the bands in Mr. Legere's lane and in che evidence lanes. Do you think that would be possible on this light box?

```

 - 14 - Dr. Shields - Direct
 (Voir Dire)
 the basis of the fact that they're light. If you
 look at MSl, DIS7, you can see that it's not quite
 as light in those two lanes.
 Q.
O.K.
A.
Q. Yes, so put DlS7 -
A. YNH24 which is 02S44, there the evidence lane looks
about as light to me as the DlG does. That's lane lo
compared to this, but I would stili call it a match
1f we're talking about lg versus here, but certainly
it's as light.
Q. It's as light as DI6?
A. It's as light but it's better formed. Dl6 is a
little bit misformed as well as belng light. The
bands aren't crisp bands, they're a little curved
and they're a little different, 0.K., so that's
another potential reason for ealling that inconciu-
sive. H30, they're darker. There's also a lot
more degradation showing up in some of the lanes.
MR. WALSH: What autorad is that?
A. It's the PH30.
MR. WALSH: The other number for that?
A. D4Sl39, I believe.
THE COURI: I'm sorry, what was the comment on that last onep
A. They're darker and easier to score therefore, and
there's just a little bit more - there's more
degradation in these lanes. You can see this black
smear that ralls out and you can see some extra, I

```
```

 would call them non-specifle bands, that show up
 in some of the lanes. The one which is 017S79,
 they're light again; in ract, almost as light as the
 D16, if you look at just 19 and Legere, }3\mathrm{ and 19,
 but I would gtill visually call those a match, and
 then there's the new locus, Dlo. I'm not familiar
 With the probe number for the new Dlo locus, is it
 PY347
 Q. TBQ7, I think.
 A. TB, and I seem to have misplaced it. There it is,
 TB97. Again the evidence lane is light but the
 bands are well rormed.
 MR. WALSH: Is this for DIOS28?
 A. Yes, it is. There are bands there, they're
 reasonably clear bands and they're well rormed bands
 relative to what happened with the DlG. And that's
 1t.
 Q. Tbat's it, yes. So I believe, Doctor, if I remember
 correctly, it was the locus D2S44 and Dl7 that you
 thought were of about equal intensity with the Dl6?
 A. I believe that's what I saId.
 Q. Doctor, next I'd like to compare some slides on the
 projector. This was, I believe, one of the ones
 that you said was of the same intensity, Doctor,
 D17
 A. No, D2S44. You've got to go back up, it wasn't this
 one.
 O. But there was - didn't you mention there was two of
 them?
 A. Yes, I'm reasonably certain = said two, but from
 looking as you went past, I think that one, for
 example, is lighter, out go back further. That one
    ```
\[
\begin{aligned}
&-16-D r . S h i e i d s ~-~ D i r e c t ~ \\
& \text { (Voir Dire) }
\end{aligned}
\]
```

is one, I think, There's certainly the D2S44, you
can see how light that is, and it's labelled l35,
and 56A and 68A or 69A, so it's lane 3 and lane 19,
you can see how light those are on that. There's a
band here and a band here that are matching this
band and this band. These two aren't that light but
these two are very, very light, O.K.?
Q. Maybe if we'11 find D16 -
A. You can go to D1S7, you can see that this is also
light in the evidence lane, 135. If you find DlG
you can show it. There.
Q. Now, this was tbe one that the Crown's witness gays
they were too light?
Mm-hmm.
Q. And we were comparing this one with the D2S44?
A. D2S44, and in ract, once you take the picture the
bottom band sort of disappears. I'm not even sure
if this is it or if it's down further, but it's
probably right here where this bottom band is
supposed to be, but with the photograph they
disappear. On the autorads you can still see them.
Now, do you recall which other locus it was thet
you said was about the same intensity of Dl6?
Go back up again, I don't recall. Well, here, thig
version of DI7S79, that may have been what it was.
They may have been two exposures. This is an early
exposure and you can see that it is light, very
light, o.K., and then the next one that you got to
is a re-exposure which is why when we went pase it
I said no, it wasn't that one because that's
certainiy not light, 0.K.? That is not as light,
so with the second exposure on Dl7S79 it's not nearly

```
```

 as light.
 Q. Now, Doctor, in Dl7S79 what appears in lane 19, maybe
you'd have to come out here, I don't know.
No, I can see.
O. The top band in lane 19 and the top band in lane 17-
A. Those two?
Q. Yes.
A. Right, what about them?
Q. If there's a distinguishable difference between those
two bands, according co the standards of the R.C.M.P.,
If there's a distinguishable difference with those
two bands, would you be able to match the bands in
lane 2 - I'm sorry, lane 3, with lane lo? In other
words, Doctor, if these two bands are not a match
because there's a distinguishable difference, could
you say that there was a distinguishable difference
between thig so-called band and this one here?
I don't see a distinguishable difference between
these two.
Q. In your lab you would call that a match?
A. Sure. I believe if this is - this is a female
rraction from this individual, I belleve, and this
Is the known sample from that same individual; is
that correct?
Supposedly, yeg.
Yes, and there is the top band from Mr. Legere who
was matched to this top band, and you can see that
they're the same size here as weli as here. I. would
call those a match, but matcring this lane to this
lane it's not a match, beeause the lower band is
below this and matches this. There ls this little
curious thing here.

```
\[
\begin{aligned}
\text { - } 18 \text { - Dr. Shields - } & \text { Direct } \\
& \text { (Voir Dire) }
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline Q. & Do you know what that would be, that middle thing? \\
\hline \multirow[t]{7}{*}{A.} & Could be a lot of different things. It could be a \\
\hline & bit of a match to this. This might be a mixed \\
\hline & gample. Ie is a maie fraction from the game \\
\hline & individual and not all the time are male and female \\
\hline & rractions perfectiy separated, so it could be a \\
\hline & Wixed sample. It could also be an artifact of \\
\hline & different kinds. \\
\hline Q. & Could that bottom one be an artiract? \\
\hline A & Could be, sure. Could be. \\
\hline \multirow[t]{5}{*}{Q.} & I believe you mentioned in locus Di6 that - if I could \\
\hline & go back to it - I belleve you had mentioned when you \\
\hline & were reading the original autorads that the bottom \\
\hline & one, although it seemed to line up, aside from being \\
\hline & faint that it was kind of blown up or - \\
\hline A & It's what we would call a not well formed band. \\
\hline \multirow[t]{2}{*}{Q.} & Not well formed, so if I go back to Dl7 would that \\
\hline & bottom one be a well formed band? \\
\hline \multirow[t]{11}{*}{A.} & Well, now, seo, you have to be careful about that. \\
\hline & If you go back to the previous - this is an over- \\
\hline & exposed autorad, and it's over-exposed on purpose. \\
\hline & It's over-exposed in a way that will allow for \\
\hline & better measurement, if you will, of the bands. \\
\hline & If you go back to the previous one where it's not \\
\hline & over-exposed, those bands are still there and now \\
\hline & they are not misformed, if you will, but as it \\
\hline & stands here from this photo, that is misformed, it's \\
\hline & sort of a blob rather than a band, but that's what \\
\hline & happens when you over-expose. It's not unexpected. \\
\hline \multirow[t]{3}{*}{Q} & Can you tell, Doctor, whether this band here in \\
\hline & lane 17 is a bit higher or lower than the band in \\
\hline & lane 19? Any distinguishable difference at all? \\
\hline
\end{tabular}
```

- 19 - Dr. Shields - Direct
(Voir Dire)

```
A. I would - distinguishable difference is a different
    question, I'm not sure exactly what you mean by
    distinguishable difference. I look at those two
    bands and \(I\) would call those a putative match.
    I think they've migrated about the same distance on
    that particular autorad and \(I\) would want to measure
    them and see.
Q. So when you say about the same distance -
A. In any lane on any gel you're going to have what we
    call mobility differences between lanes. There's
    going to be slight differences in the distance that
    bands migrate, even when they are identical bands,
    they're the same DNA molecules. There are a variety
    of reasons that that can happen. It can aimply be
    a concentration of salts or actual concentration of
    the gel, a variety of different things can cause
    lanes to move at silgntly different rates.
    What if according to the R.C.M.P. standards that
    slight mobility shift would be enough to call it
    inconclusive? How hould you change your standards
    In reading or in interpreting the rest of the
    so-called matches?
A. I'm not sure I could you repeat the question, what
    if the R.C.M.P.'s standards what?
Q.
    If my memory gerves me correct when Dr. Bowen was here
    when Dr. Bowen testifled, I asked him if these two
    were a match and he said no, he could see a
    distinguishable difference. Like, this one was, I
    believe, a bit lower than this one here, so he would
    not call that a match. According to his standards
    he would not call that a match.
    It's puzziing to me. If I understand the gels
correctly this is the same individual as this, and here this band, although it's more exposed, overexposed, so that the band gets broader, appears to be a little bit higher than this between these two. When you have one that's a little bit higher and a little bit lower and they're visually not obviously different, \(I\) would call those a match of the band. Not a match of the genotype, but a match of the band, that's what I would call it, and if - see, I'm not sure \(I\) - well, \(I\) don't understand thia notion of simple visual - visually aeciding that a very, very small mobility difference on a gel is enough of a difference to call it not a match. I can see doing that with genotypes where you've got one band that's about the same and ane band that's very different, I could see declaring those not a match, but I personaliy cannot see declaring those two not a match simply on the basis of looking at them. I would have called them a match. And then \(I\) would have looked at the sizing data to see whether my eyes were telling a reasonable story or not.
```

MR. FURLOTTE: O.K., My Lord, maybe before we get into the

```
other aspect of population genetics it might be a
proper time for a short break?

THE COURT: O.K. All right, you're still on the stand, Doctor, and you shouldn't discuss the case with anyone until all your evidence is complete, as in sure you understand.

MR. WALSH: My Lord, if I may, the exhibit that was riled,
the -
THE COURT: The copy of the paper?
MR. WALSH: Yes, perhaps if we could make arrangements to
heve it photocopied at break-time if you would allow us to have it done?

THE COURT: On, yes, surely. Take the original there, or copy, whichever you need. Have the originals of the autorads gone back to Dr. Bowen?

MR. RYAN: Yes, they have, My Lord.
(SHORT RECESS - RESUMED AT 10:55 a.m_)
(ACCUSED IN DOCK.)

DR. SEIELDS RESUMES STAND:
MR. FURLOTTE: O.K., Dr. Snields, now we'll move into the area of population genetics, and maybe you could for the benefit of the Court and us, if you could give a brief description as to what population genetics is and how it applies to the rorensic fiela?
A. Probably what \(I\) would like to do is sort of define probability and go from there and talk about why data bases are necessary and why we use data bases to come up with probabilities of what have been called colncidental match and a variety of other things. A probability is a number that gives some Idea of the weight, the likelihood of an event happening.

Some of the standard ways we have of talking
about probabilities to indicate what they are and
how they happen is we'll talk about coloured balls
In an urn, for example. We have a jar that has
coloured balls in it, and if \(I\) were to just take
an urn and say that there are black and white balls
in it, can you tell me what rhe probability of
drawing a black ball is. If I were to hand it to
```

- 22 - Dr. Shields - Direct
(voir Dire)

```
```

a set of people they would look me in the eye and
I would hope say they don't know unless they were
prescient, unless they could somehow see into the
vase. In order to develop a probability you have
to know something about the number of events, total,
and the number of events of the specific instance
that you're interested in. As the example that I
was using, if I were to tell someone that there were
rive black balla and five white balls in an urn and
I asked them what's the probability of drawing a
black ball, knowing that there are ten different
balls and five of them are black, they would say
that the probability is five out of ten or one-half,
but they do that simply because they know how many
balls are in the urn, so they have a count, and that
would be the data base ror developing the
probabilities of puliing a black or a white ball.
You can use the same analogy to illustrate how
one goes about using the multiplication rule if
you're talking about statistically independent
events. You can assume that a black ball- that
drawing a black ball is independent of drawing a
white ball, as long as when you draw it you put it
back in, it's called sampling with replacement, and
then the probabllity of drawing two black balls in
a row by that product rule would be one-quarter,
one-half times one-half. The reason that mappens
is simply that half the time the first ball you're
going to draw is going to be white, so that half
the time it's going to be a railure. Half the time,
the other half the time that you draw a ball, it
will be black ano that will be O.K., for getting two
black balls in a row. It's on the first draw half

```
\[
\begin{aligned}
-23-D r . S h i e l d s- & \text { Direct } \\
& (\text { voir Dire) }
\end{aligned}
\]
```

the time you'll have the black. The second time
When you put that black ball back in, half the time
you're going to end up with a white, which is again
a failure, so three-quarters of the time, halr of
that half, plus the original half that you failed
you will end up with something other than two blacks
In a row and you end up one-quarter of the time with
one black, so if they are statistically independent
events you can multiply probabilities together to
come up with what we call the joint probabiiity.
Another analogy that we use, in fact that same
analogy can illustrate why the probability for a
single genotype at a single locus is 2PO rather
than simply }PQ\mathrm{ where }P\mathrm{ and Q are the frequencieg of
the two alleles. The probability of drawing a black
ball and a white ball is the probavility of drawing
a black first, which is one-half, and the probability
of drawing a white second, which is also one-half,
so 1t's one-quarter of the time you'll get that
combination, but also one-quarter or the time you'll
get a white ball first and a black ball second, and
it doesn't matter which way you do it, so you add
the two quarters together which is the same as
saying PQ times 2, so that one-half the time you
end up with a black and a white ball. That's what
we call a binomial expansion and how you develop
probabilities ror single loci. It's exactly the
same sort of phenomenon.
Another analogy that helps some people think
about it is playing cards. If I ask people what's
the probadility of drawing an ace from a deck of
cards, if they play cards they'll say to themselves,

```
```

-24 - Dr.Shielos - Direct
(Voir Dire)

```
```

well, there are four aces and there are 52 cards.
If they play cards a lot and they gamble big money
on it they'll actually know that that comes out to
be one in 23, four divided by 52, so they'll know
that the probability of drawing any ace, it doesn't
matter what kind, is one in l3, but then I can tell
them that I actually cheated a little bit and I'm
actually talking about a pinochle deck, and for those
who play pinochle, they know that a pinochle deck
is different than a regular deck, it includes aces
through nines double numbers so that there is
actually eight aces and 48 cards, so the probability
of drawing an ace from a pinochle deck is not one
in l3 but one in six. Those are frequency differ-
ences between two populations or two sub-populations.
The pinochle deck is the equivalent or a suo-popula-
tion in all kinds of decks of cards and the regular
deck of cards is considered to be a different kind
of sub-population with different gene frequencies,
different frequencies or the events that they have
which are cards, so the question becomes in forensic
DNA typing and in lots or other genetic kinds of
analyses, how do we go about determining what is
the most accurate and reliable probability that we
can develop to put a weight on something that's
declared to be a tentative match or a non-exclusion.
You can use lotg of different terms for it.
Hell, the way you've got to do that is to
sample. If I were to throw ten thousand cards out
In the middle of the room and ask somebody to please
fina out for me what's the frequency of aces through
deuces in this particular mega-deck of cards out

```
```

there. There are a number of things that they
would have to do to do that legitimately, to do
that technically correctly. For one, they would
have to shuffle the cards, which is what we call
random sampling. If they dion't shuffle the cards,
decks of cards when they come from the manufacturer
are in guitg, so that for example, the first ten
cards you'd pick if you had no shuffled decks would
be all orie suit, it would not be a random sample of
all four suits, it would be biased to the one suit
that exists there, but if you shuffle all of the
cards, if you get a random sample, then your
expectation is higher that you're going to at least
dra\& some of the different individuals that
represent each population.
What determines whether you have a good sample
or not are two different things, how random that
sample is or how unbiased that sample is if you can't
have a random sample, and it might do good to just
define random and show why it's not likely to be a
truly random sample. A real random gample means
that every individual, if we're talking about
VNTR alleles as we would be with DNA forensic
typing -- if every individual in the population in
question had an equal probablilty of being sampled,
everybody in Canada in the Caucasian race had an
equal probability or being sampled, that is not in
any practical sense ilkely so the important thing
is that it be a representative sample, which means
that in the data base are a surficient number or
Individuals from all of the genetically different
sub-groups that go into making up a Canadian

```
```

-26 - Dr. Snields - Direct
(Voir Dire)

```
\begin{tabular}{|c|}
\hline population and that there are enough of them to \\
\hline represent those individuals at their true \\
\hline frequencies. Well, in order to do that, ive read \\
\hline tegtimony that suggests that small samples are \\
\hline enough. Well, they are if you're talking about \\
\hline things that vary in a minor way, where there are \\
\hline two or three alleles and that they're all in high \\
\hline frequencies, but in the case or these VNTR loci \\
\hline there are at least 28 bins and if you think about \\
\hline sampling to represent the true frequencies in 28 \\
\hline different phenotypes, which are these blns, then you \\
\hline need much bigger samples than if you were doing it \\
\hline ror two bins, heads and tails. Ine notion here is \\
\hline that simply by chance, even if you have a well \\
\hline shuffled deck, you're going to pick occasionally \\
\hline three aces out of the four and occasionally you're \\
\hline going to miss all of the deuces in small samples, \\
\hline and the more difrerent instances there are, the \\
\hline more alleles there are, the bigger the sample has \\
\hline to be to have a robust estimate of the actual \\
\hline frequencies of the alleles with those phenotypes, \\
\hline and you can actually do some analyses to determine \\
\hline what are robust sample sizes, depending upon the \\
\hline allele frequencies and how many alleles you're \\
\hline trying to estimate the frequencies for. If you do \\
\hline that, if instead of trying to estimate the frequency \\
\hline of the cards, the ten thousand cards that I threw \\
\hline out there, with just fifty which would guarantee \\
\hline that you couldn't get two of the cards in a regular \\
\hline deck of cards, you do il with five hundred, then \\
\hline you're likely to be getting closer to an appropriate \\
\hline sample, and there are statistical tools in population \\
\hline
\end{tabular}
```

- 27 - Dr. Shields - Direct
(VOLr Dire)

```
```

genetics that allow you to make up for the size of
your sample and those are called confidence limlts,
which I think have been talked about prior to tooday,
If you have a confidence interval around your
frequency estimate it states what the highest and
the lowest frequency is likely to be for the
ultimate sample if you had a huge gample size, and
in fact, as your sample size gets bigger the
conridence limits become smaller around your
estimate, and that's a good property. What it's
saying is that the bigger the sample the better
your estimate is, but representativeness of the
sample is not the only thIng that goes into
determining what the correct probabilities are for
individuals matching. The other thing that'g of
critical importance has to do with what we call
substructure or sub-population struceure or
population structure in general, and that is the
degree - substructure or population structure can
arise for a variety of reasons. The primary
reason is non-random mating. It's where individualt
tend not to mate randomly, and random there means
exactly what I meant before. If we were going to
consider the Canadian Caucasian population a random
mating population that would be an assumption that
every male in the population has an equal probability
Of mating with any female in the population from
coast to coast and Arctic to U. S. border.
Everybody recognizes that trat asgumption is
not likely to - in ract, does not hold, that
IndIviduals tend to mate within ethnic groups, they
tend to mate in geographical locations, individuals

```
```

- 2B - Dr. Shields - Direct
(Voir Dire)

```

```

- 29 - Dr. Snields - Direct
(Voir Dire)

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{that if reproduction is not random, if there's not} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{then some individuals will have higher probabilitie* of sharing alleles with other individuals than they}} \\
\hline & \\
\hline & do with another set of individuals in a different \\
\hline & sub-population. In essence, that problem of sub- \\
\hline & populations is the equivalent of asking the \\
\hline & question, what's the probability of drawing an ace, \\
\hline & and the prodability is one in l3 in one kind of \\
\hline & sub-population, regular decks of cards, and it's a \\
\hline & different probability, one in six, in a different \\
\hline & kind of deeks of cards, in pinochle decks, and if \\
\hline & we take pinochle decks and regular decks and mixed \\
\hline & them we end up with a third probability that's halr \\
\hline & of the two, l/l3th and l/6th, which ends up being \\
\hline & about one in \(81 / 2\), is the probability we get from \\
\hline & pooling those sub-groups. Now, what happens when \\
\hline & you do that is that you will misestrmate the \\
\hline & probabilities that are associated with a particular \\
\hline & genotype. You will misestimate them by some level \\
\hline & or another and the question becomes whether that \\
\hline & level or another is sufficient to say that it's \\
\hline & inaccurate or unreliable. \\
\hline \multirow[t]{3}{*}{0} & 0.K., now, Doctor, are you aware of any studies \\
\hline & that have been done within the different races in \\
\hline & Canada or the United States? \\
\hline A. & Yes, I am. \\
\hline Q. & Are you prepared to discuss your findings? \\
\hline \multirow[t]{4}{*}{A.} & Sure. From having briefly read earlier testimony \\
\hline & I think some of thls will not be coming as a \\
\hline & surprise. I just want to start with an aside, Your \\
\hline & Honour, about what statistically signiricant means \\
\hline
\end{tabular}
```

in its many different senses. When seientists are
dolng comparisons, whether they're dolng comparisonk
of single bins, which is what we have here, bin
numbers, frequencies within a single bin, and where
the frequencies across a whole distribution of bins,
what they try and do is set up what we call
statistical analyses that allow us to not just
use our eyes but to also come up with an objective
way of determining whether the differences that are
observed, there are always going to be differences,
they're never going to be exactly the same - whether
those differences that we observe are meaningful
differences or not, and meaningful can have many
meanings, and I'll talk about some of them as we
go along, but the way that a statistical test works
is it looks at the amount of variation. You can
see that there's variation between these two bars.
What this particular graph illustrates is a
comparison between the FBI's and the.R.C.M.P.'s
Caucasian data Dases for the probe or locus D2S44
for Caucasians, and the black bar is the rrequency
in a particular bin of a particular set of alleles
that rall within that bin for Caucasians in the
U. S. and Caucasians in Canada rrom the R.C.M.P.'s
data base, which is the white bars.
Just as an aside, the FBI's data base consists
of about 210 to 220 FBI agents training from all
over the U.S., and then separate samples that were
added from Texas and Calirornia ard Florida from
blood banks to produce a datc base of about the
same size as the R.C.M.P.'s data base, it's called
the FBI composite or C3 data base, so instead of

```
\[
\begin{aligned}
&-31 \text { - Dr. Shields - Direct } \\
& \text { (voir Dire) }
\end{aligned}
\]

\footnotetext{
looking at this in terms of single pairs, is this different from this or is this different from this or is this different from this or this different from this, there are statistics, and one that lve used is one of them that allow you to look at the entire distribution, and they ask the question, is this distribution, the black bars, different from this diatribution, the white bars, in a statisticaly significant way, and in this particular case there are statistically significant differences when you consider the whole distribution of alleles at the D2S44 locus between the \(F B I\) and the R.C.M.P. Caucasian data bases. The reason we say that is because of this number here. This is the probability of being wrong. If you choose to decide, if you end up deciding that those data bases are different, tho probability of bejng wrong is less than one in 200. The probability of being wrong when you conclude that they're different, turned around, even though it's not absolutely correct to turn it around, in esgen e what it's saying is that you have about a \(99 \%\) chance of being correct when you conclude they're different. What it says exactly is that the probability of being wrong, including that they are different, is less than one in 100 , so in this particular case for this particular locus there are significant allele frequency differences between Canadians and Americans or U. S. citizens, the othen North Americans, in the D2St4 locus.

THE COURT: Mr. Furlotte, these aren't in evidence, are
they? Are you putting them in evidence?
MR. FURLOTTE: I will be requesting to put them in evidence.
}
```

THE COURT: Yes. Shouldn't they be put in as you go along

```
    so that -
MR. FURLOTTE: O.K.
THE COURT: The written transcript will be at least
    meaningful.
MR, FIRLOTTE: Would you - for the court purpose we could
    either put these into evidence or have them Xeroxed
    and put the photocopies into evidence.
THE COURT: Do they Xerox well?
A. Perfectly well.
MR. WALSH: I have no objection to the Xerox.
MR. FURLOTTE: Maybe in the break we could have them Xeroxed.
THE COURT: Yes, but can they be marked in the corner with
    a marking pencil of some kind? The firgt one would
    be VD-118.
A. I'm now referring to VD-119 which is for a second
    probe, the D4Si39 locus, and in this particular
    case you can see that even though there are
    differences the statistics - statistical analyses
    tell us that it's not statistically significant.
    The probability of being wrong in concluding they
    were different would be one in ten, and for wost
    scientists the area of around .05 , five chances out
    of 100 of being wrong is what we call statistically
    significant. In addition, some people will say
    that silghtiy more than that is enough to. be called
    marginally significant and some people will say,
    oh, we just use the .05 , but at .116 everybody
    Hould say that there is no statistical difference
    In the 045139 locus between Cacasians in Canada
    and Caucasians in the U.S. The lower half of that
    is a third probe or locus, the Dls locus, and
    again there is no statistically signiricant

```

FBI and the other forensic groups had already
decided that there were at least sufficient allelic
differences between the races to develop different
data bases for different races in order to engure
that the probabjlities would be more accurate than
ir you just had a giant human data base without
regard to racial differences. During the early
part, six or seven months ago, some of the data
that I will also begin expresoing in a rew seconds
had not yet been analyzed in a way that allowed one
to look and see whether there was within race
variation in VNTR alleles. That was my flrst
experience in Caucasians illustrating that there
might be variation between Caucasian sub-populations,
and I personally attribute the difference between
Canada and the U. S. to the very obvious difrerence
In the demography of the two countries and the
ancestry that's associated with both countries in
that about 70%, based on an F.C.M.P. papers, or
Canadian citizens are either of French or British
extraction, ancestry, and in contrast to the United
States I don't think that there's any group,
Including the British, that have as much as 35% or
Our Caucasian population, so in my own opinion, I
think if those differences are real, and the
statistics say that they are, that it probably stems
from the fact that Canada is a more homogeneous
group than is the United States, and that may be
part of the explanation for why there are difrerencas
between Caucasians in the U. S. and Caucasians in
Canada.

```
Again very recently some scientists in Great
```

Britain, a statistician and a population geneticist
have come up with what they consider to be a
reasonable approach to correct for these particular
potentizl problems of substructure, and what they
do is they say that we can look at other genetic
systems, even though we don't have enough data yet
to completely analyze the VNTR systems we can look
at other genetic systems, and we can say what's the
greatest amount of substructure that we see in
these genetic syetems. We can say what's the
greatest degree of sub-population structure that we
gee, and using that as a conservative estimate one
can generate a correction factor that changes tha
rrequencies in a way that takes into account, to
their way of thinking, the possibilities of
substructure in these kinds of forensic DNA typing.
The gentlemen's names are Nichols and Balding, and
they produced a formula that allows one to calculate
by their methodology probabilities of coincidental
match. I'm always bothered by the way that those
probabilities are presented. To my way of thinking
the way they should be presented, the way they
should be thought of, is it's the probability that
anybody else could have contributed the evidence,
that somebody other than the suspect or somebody
other than the victim if it's that kind or case,
could have contributed the evidence sample rather
than saying that it's the probability of - as the
FBI still does, or at least did in the lasu case
that I was involved in, of matching the known sample
from a victim or a suspect, but in any case that
probability that you end up with to weight the match,
to come up with some egtimate of what's the

```
```

- 36 - Dr. Shields - Direct (voir Dire)

```
\begin{tabular}{|c|}
\hline likelihood of this match being the result of somebod other than the suspect or the victim, and what \(I\) can \\
\hline \multirow[t]{2}{*}{do then is lliustrate what happens to the probabilities when you use different data bases or} \\
\hline \\
\hline when you use the correction factor suggested by \\
\hline Nichois and Balding. It will be VD-121, and what \\
\hline I've done is compared the mateh probabilities that \\
\hline would result using the R.C.M.P.'s data base in this \\
\hline particular case, using the FBI's data base, and \\
\hline using Nichols and Balding's method with the R.C.M.P. \\
\hline Erequencies as the base, and what you can see, Your \\
\hline Honour, is that the numbers vary. They vary in what \\
\hline I consider to be a reasonably predictable rashion \\
\hline for all of the loci that are used. The R.C.M.R. \\
\hline produces a get of numbers for all of the loci that \\
\hline are used, the \(F B I\) also produces a set of numbers \\
\hline Which usually are larger here whlch means swaller \\
\hline probability, but not always, and Nichols and \\
\hline Balding invariably produce larger numbers. The why \\
\hline is because there's a correction lactor that goes \\
\hline into those numbers to make up for the possibility \\
\hline that there's substructure. When you do that this \\
\hline is the final probabilities for two-locus, 4-10cus \\
\hline and 5-locus matches. One in 7,400 with rounding \\
\hline for the R.C.M.P., one in 9,000 for the FBI. and one \\
\hline in 4,000 for Nichols and Balding. For the 4-locus \\
\hline match it's one in 5.2 million, and one in 9.6 \\
\hline million, although I read one in 9.9, that must be \\
\hline rounding differences as well, and one in 226.000, \\
\hline Nichols and Balding. For the five locuses, one in \\
\hline 310 willion using the R.C.M.P., one in 666 miliion \\
\hline using the FBI, and ore in 5.9 gillion using N \\
\hline
\end{tabular}
```

and Balding. I would just note, Your Honour, that
these are extrzordinarily, to my way of thinking,
difrerent probabilities.
That there is additional evidence for VNTR
variation among populations within races can be
Illustrated by looking at some of the other analyses
that have been done, and I'm forced here to use the
FBI C3 data base because their raw data came with
the location of the samples, and the raw data that
I have from the R.C.M.P. did not, but for locus
Dl7579 what you're looking at is there should be
four bars in each bin, the individuals from the
California data base, from the FBI's agent data
base which was a countrywide U.S. data base,
individuals from Florida and individuals from Texag.
In that order acrosa, and the little X is the
average of those four together and what's used in
case work from the C3 data base, and all I Hould
note here is that, one, you can see there are
differences from the average depending upon where
you are from in the United States, and it can vary
by what looks to be reasonable amounts and are
statistically significant amounts for this particular
locus. Nine chances out of a thousand that you'd be
wrong in concluding that the distributions are
different, so the reverse of that in concluding
that you're right, that you're right in conciuding
that they're different, so that there are
statigtically significant differences in allele
Irequencies including Caucasians from callfornia,
Texas, Florida and the FBI's general U. S.
population. That would be vD-122.

```

Tnis is VD-123 and it illustrates the gage pattern now. You can see there are differences, this here is the little equare that says where they are, but in this case they are not statistically significant, so \(I\) would conclude that there are no differences between the Texans and the floridians and so forth and so on at the DIS7 locus, just as there were no differences between the R.C.M.P. and the FBI data base at that locus. The same is true of the locus D4Sl39, which I have illustrated here, and this one will be -

THE COURT: VD-124.
A. Yes, 124, and again here you can see visually that there really aren't that much in the way of differences, and in this particular locus notice that california is not here, it's because the California crime labs don't use this locus so that they were not able to contribute a sampe to the composite data base, but you'd have a \(97 \%\) chance of being incorrect if you chose to decide that thosa were different, that's what that means, so we would conclude that thoge were the same.

The locus D2S44 which will be VD-125, there are again differences, and california's back in and in this particular case the differences are what we call marginally significant. It's up to the individual scientist who's looking at this sort of thing to ofecide whether seven chances out of 100 of being wrong in concluding they're different is too much of a chance, and the final locus, D14513-

CLERK: VD-126.
- 39 - Dr. Shields - Direct (Voir Dire)
A.
Again you can visualize the differences, and in this case it says that statistically the difference is marginally significant. A third set of data can be gotten from a paper produced by Dr-Ron Acton of the University of Alabama at Birmingham with a set of co-authors that included Dr. Budowie who's the chief scientist for the FBI'g research division, DNA research division, and in fact a lot of the data that you'II see are the FBI's data, but the difference is that the Alabama population is separate and this is all for locus D2S44, and when comparing black and white races in Alabama they report that there are statistically significant differences with some of the frequencies.
THE couRT: That will be VD-127.
A. 128 is a comparison or the whites in Alabama versus the whites in the U.S.A., which is that PBI population or 220 agents, and there are statistically significant differences in those as well. Here you can see gome of those, almost \(13 \%\) there, so forth and so on.
THE COURT: VD-128, the last one.
A. Within races Acton et al compared Alabame black's to South Carolina blacks and found statisticaily significant differences. Tie South carolina blacks here are the South carolina population of blacks in the FBI's black data base, the Alabama blacks are Dr. Acton's example.
THE COURT: VD-129.
A. \(\quad 130\) is a aimilar comparison of blacks in alabama, the same blacks in Alabama, with blacks in Texas, and again there's a significant difference, and

\[
\begin{aligned}
& \text { - } 41 \text { - Dr-Shields - Direct } \\
& \text { (Voir Dire) }
\end{aligned}
\]
```

misunderstanding of what I meant by sub-populations,
but if we're talking about true sub-populations
there is going to be a loss of alleles, o.K., there
are a number of dirferent things that happen with
sub-populations, You don't expect each sub-popu-
lation to carry as many alleles as the entire what
We call meta-population does. When that happens,
when there are fewer alleles within a sub-population,
the frequencies of the common alleles automatically
go up. Because they automatically go up as they do
here in this population the probability of matching
at that particular locus with that particular allela
is very high for an individual from this population
much higher for an índividual in this population
than if we were to test it in either of the other
two populations where there are more alleles, and
that's the kind of bias that I was talking about in
an arridavit that I provided in a different trial.
Is that your explanation, Doctor, as to the
criticiams by Dr. Carmody and Dr. Kidd of your -
Yes, they criticized my statement - I don't think
I said invariably, but I trisnk I said usually, if
you take an inaividual and test them in a data base
other than their own sub-population the probability
that results will be biaged against that individual
and the reason why is because if you're talking
about true gub-populations that are surficiently
isolated from one another there are going to be
nigher frequencles of all of the common alleles in
a sub-population than there would be in the general
population using a mixed population or in a dirferent
sub-population. They'll have high frequencies at

```


```

that at least can give you a hint of whether it's
reliable or not. I also made the statement, for
example, in the Bourguignon case, that I thought
that there might be significant differences between
the French-speaking Canadians and the English-
speaking Canadians. I was aware of no data at the
time that would indicate whether that was or was
not true, but you did show me the piece of paper
that Dr. Caroody produced in evidence.
I believe VD-65, and I'll show it to you again,
Doctor.
Thank you. Yes, it is VD-65, and I would just note
that there's a line for France in which the
Crequencies of alleles at two of the loci that are
currently being used in forensic cageg are
presented and that the frequencies there are larger
for the two alleles that are involved in the Legere
case and they do not fall within the Canadian 99%
confidence interval, and under those circumstances
the French-speaking Canadians who are descendants
of the Prench may indeed have significantly
different allele frequencies no matter how you
decide to talk about significant differences in
allele frequencies, and if they do, then the
probabilitieg that are produced simply by using the
Canadian Caucasian data base may indeed be biased
against, and those two being much larger suggest
that they would be for those two, and under those
circumstances I can't sit and say that I'm comfortabl
with the probabilities that are produced, that I
think that they're reliable and accurate enough
tnat I consider them useable.

```
```

-45 - Dr. Shields - Direct
(Voir Dlre)

```end \(u p\) with the same size confidence limits butyou'll have a different point estimate in the middleso It does not take into account substructure,confidence intervals do not.
Q. Doctor, I'm going to show you a copy of an affidavit
that you had supposediy submitted in the Danjel
Vandebogart case.
A. That's a copy of my signature.
THE COURT: UD what? That's in evidence now?
MR. FURLOTTE: It's not in evidence. No, it was discussed
much but never put in evidence. Is that a copy of
the affidavit that you put into evidence that \(D r\)
Kidd and Dr. Carmody had commented or criticized
some of your remarks in?
A. Yes, it is.
Q. And what was the basis of that affidavit, what was
the purpose of it?
A. It was a re-rebuttal of Dr. Bruce Budowle's testimony
in this case which was a rebuttal of my original
testimony.
Q.
And the substance of the affidavit was to show what?
```

-46 - Dr. Shields - Direct
(Voir Dire)

```
A. Three thangs; one - I don't even know if this came up nere but the FBI's original data presented to me in the syracuse case included in it cell line controls without obvious, to me anyway, ldentifiers that they were cell line controls, and i had asked Dr. Budowle and others why my numbers didn't quite match. I discovered that they didn't match when I discovered that my numbers were slightly different from Dr. Hartl's from the yee case, and they finally got back to me and said it's because the cell line controls are included, so removed the cell line controls, re-ran all of the analyses and presented it with the same conclusions I Just now pointed to different bins to reach the same conclusions. That was the primary purpose of this affidavit. The secondary purpose of the arfidavit was that \(I\) did in the time between the original testimony in this case and when \(I\) was able to do this re-rebuttal had received from you the data from the R.C.M.P. on their data and \(I\) was able to do the analysis that illustrated that there was a significant difference between the R.C.M.P. and the U.S., and that is over and over again what is the "problem" that some population geneticists have with this technique. It's the fact that substructure ir it exists, and if it exists at a signiricant level, significant enough level, will make the probabilities
that are produced sufficiently biased in a statistical
sense, not a legal sense, Your tonour - excuse me,
Your Lordship, that they're inaceurate enough that
they're bad, in essence, and also to complain a bit
about the treatment that we seientists get from
```

- 47 - Dr. Snields - Direct
(Voir Dire)

```
```

 lawyers, which I think all of us feel.
 MR. FURLOTTE: I would offer this into evidence, My Lord.
MR. WALSH: I have no objection, My Lord.
THE COURT: That will be UD-136. What was the name of the
case there?
MR. WALSH: Vandebogart, My Lora.
A. New Hampshire vs. Vandebogart.
MR. FURLOTTE: Doctor, do you have any reason to believe
that there may be a difference between Canadian
Caucasians of Britigh descent and of descent from
France?
A. The data that were provided in the handout by Dr.
Carmody suggests that it's a reasonable possibility,
but there's additional - I don't know whether I'd
say Canadians in this case of French descent.
I pregume from Mr. Legere's name that he is of
French descent but I also could talk about it in the
context of the band sharing that you see in tne New
Brunswick population as is evidenced on the autorads
produced for this case and the sizings produced for
this case.
Q. O.K., in this case, the Legere case, with the
evidence that you were given in the autorads and the
sizings and whether matching bands were you able to
do something with that information?
A. Yes, I was.
Q. And would you tell the coure what you did and what
the significance is?
A. What I did is I looked at the autoraas and I looked
and said how many bands match between indiviouals
who are not related, recognizing that, for example,
Donna anol Linda as they're listed in the evidence
are sisters. Not using that as a comparison but

```
```

simply comparing unrelated individuals, Murphy with
Linda, Mr- Legere with Murphy, Mr- Legere with Donna.
and Mr. Legere with Nina, who I presume are all
unrelated pairs. One can use all of the assumptions
ot the R.C.M.P.'s analysis and production of
probabilities to determine the probability that the
Individuals in question could match at as many bands
as they do, and if the R.C.M.P. data base and the
frequencies it produces are the right frequencies,
then we would have some estimate of how likely it
is that all of these could'match, so for example,
Murphy with Linda -
Q. Now, when you say match, Doctor, are you talking
bands match or just that bands fall in the same
frequency bin?
A. No, these to me are the same alleles. They migrate -
I cannot distinguish them from - I cannot distinguish
that they are different alleles, either visually or
through the computer analysis, and under those
circumstances, for example, Murphy ghared four bands
with Linda, Legere shared four bands with Murphy -
not the same bands, by the way, they're different
bands for the different pairs - Legere shared four
bands with Donna and Legere snared two bands with
Nina, and you can develop the probabilities of those
sharing patterns if the {.C.M.P.'s frequencies as
produced in their data base are truly representative

```
A.
Q.
```

 - 49 - Dr. Shields - Direct
 (Voir Dire)
 of the frequencies of those bands in that population
of interest, the New Brunswick individuals who are
Involved in tois particular case as either victims
or sugpects, and under those circumstances, for
example, the probability or Linda's watching Murphy
at four bands is one in 10,807, and the probability
of Legere matching Murphy at four bands, the four
bands explicitiy that they match at, is one in
2,749, and the probability of Legere matching Donna
at the four bands at which they match is one in
5,616, and the probability of Legere matching Nina
at two bands, in this case it was a genotype match
as well, is one in nine. Now, what that means is
that those probabilities are supposedly independent
samples from the general population data base.
What's the probability of an Individual sharing four
bands if this is the digtribution of alleles,
explicitly these four bands, and in the next
comparison if we draw two individuals at random
from a data base, from a general population, what's
the probability that they will share, and it's those
probabilities, and if those are statistically
independent events the probability of all four of
those events happening, Murphy sharing four with
Linda, Legere four with Murphy, Legere four with
Donna, and Legere two with Nina, would be once
chance in l,496,600,000,000, which implies to me
that there's probably structure in the New Brungwick
population, and that the frequencies that are used
are not perfectly correct.
Now, one can play, U.K., one can say that
Murphy matches Linda, and then I have Legere match

```

\begin{tabular}{|c|c|}
\hline & background level of band sharing in order to \\
\hline & determine the weight of how many bands are actually \\
\hline & shared in a particular case. \\
\hline Q. & Now, would this be an indication that there would \\
\hline & be inbreeding, or just an indication that you \\
\hline & couldn't use the general data base that the R.C.M.P. \\
\hline & are using? \\
\hline A. & I personally would take it as evidence that there's \\
\hline & structure and that the New Brunswick population that these. \\
\hline & people are sampled from is genetically dirrerent \\
\hline & from the general Caucasian population represented \\
\hline & as the R.C.M.P. data base. They're genetically \\
\hline & different probably because of the generic aense of \\
\hline & Inbreeding, that they have a different pattern of \\
\hline & co-ancestry, that they have a higher probability of \\
\hline & mating among themselves than they do of having \\
\hline & individuals come from outside their group and mating \\
\hline & with them. They're not a random mating group, \\
\hline & they're a sub-population - part of a sub-population. \\
\hline Q. & Now, the calculations that you arrived at to matching \\
\hline & at one probe or at five probes to be something like \\
\hline & one in twelve thousand-some? \\
\hline A. & Mm-hmm. \\
\hline Q. & And would that be for unrelated individuals or would \\
\hline & that also take in maybe possible relations of Mr. \\
\hline & Legere? \\
\hline A. & It takes in what we call a background level of \\
\hline & relatedness. It's pedigree unrelated, which is what \\
\hline & these people, I presume, are, o.K.? In other words, \\
\hline & they're not cousins, they're not second cousins, \\
\hline & they're not siblings. What would happen if you had \\
\hline & siblings and cousins or uncles and nephews is that \\
\hline
\end{tabular}
Q. And bigger meaning what? Maybe - sometimes we get confused.
A.
Q. So when you quoted the rigures of one in 12,000 or sharing five loci that that again would drop down relatively to maybe one in 6,000 or -

No, no, no. A brother would be one in 256 even if there were no band aharing, O.K.? It's two different questions.
Q. Now, Doctor, I understood you to say that you were doing something similar to - with the FBI data base as Dr. Hartl did in the Yee case, or did \(I\) misunderstand that?

What I did is \(I\) used the data that were provided. Dr. Xidd finally released those data, released the paper, and \(I\) was given a copy or thoge and I did a statistical aralysis using standard bins to see if there were rrequency differences between the three Indian populations that he had studied, and there were.
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& \text { - } 53 \text { - Dr. Shielos - Direct } \\
& \text { (Voir Dire) }
\end{aligned}
\] \\
\hline Q & And are you aware of the findings of Dr. Harti's, \\
\hline & that Dr. Hartl did with Dr. Kidd's data? \\
\hline A. & Yes, I am. \\
\hline Q & And what were his findings? \\
\hline A. & He did the sort of analysis that I just talked about \\
\hline & where he looked at the three data bases that you \\
\hline & would produce from those three. Indian populations, \\
\hline &  \\
\hline & probabilities or coincidental match, as it's been \\
\hline & called in many cases, or the probability that \\
\hline & somebody else could produce the evidence, as I \\
\hline & prefer to call it, for the three populations and \\
\hline & looked at how it dirrered oetween, you know, \\
\hline & depending upon which population you used, and he \\
\hline & found differences that he considered to be of great \\
\hline & import, large magnitude. \\
\hline Q. & Do you know whether or not Dr. Kidd's - how \\
\hline & significant Dr. Kidd considered his data? \\
\hline A. & Dr. Kidd has testified that he doesn't ceel that \\
\hline & the differences are big enough to worry about in a \\
\hline & practical sense in forensic settinge. Dr. Hartl \\
\hline & strongly disagreed and I moderately disagree with \\
\hline & Dr. Kiad in the sense that as \(I\) said in the \\
\hline & affidavit that you put into evidence - I also read \\
\hline & that Dr. Kidd criticized this, but r'm not sure why, \\
\hline & I wasn't able to get from his testimony why it was \\
\hline & incorrect on my part - talking about a difference \\
\hline & between one in 50,000 and one in 200,000 of risk of \\
\hline & dying from a particular treatment, if those mumbers \\
\hline & were handed to me by a physician I know which one \\
\hline & I would choose, and I think that's a rational choice \\
\hline & and I think that's what we're asking the triers or \\
\hline
\end{tabular}
\[
\begin{aligned}
-54-D r . S h i e l d s- & \text { Direct } \\
& (\text { Voir Dire) }
\end{aligned}
\]

Q. And when was that put out for publication?
A. When was it first summitted or when did it come out?
Q. Well, either. When was it first submitted for peer review, do you know that?
A. I believe it was first suboitted sometime in late 189. I'm not sure, I'm not absolutely certaln. It was revised a couple of tioes, I do know, and it finally appeared a couple of weeks ago, came out in the May issue of "American Journal of Human Geneties" Do you know why it was revised?
Because like every sclentist you always revise.
You get peer review and you improve the paper,
address some of the criticisms, do your best to
improve it.
Q.

Do you know whether or not Dr. Lander has taken a different position from the time he wrote the Branbury Report?

Dr. Lander wrote an editorial, an invited editorial, that went with the publication of the fixed bin paper as well as another paper by Alec Jeffreys and his group in Britain on forensic use of multilocus DNA typing, and his position ~ Are you talking with VD-49A? That's correct. It was published at the same time? Published at the exact same time, and in it he stated what he liked about what this fixed bin paper was doing and he also stated what he considered to be the remaining criticisms, and they're essentially identical to what he said in the Banbury Report. One of the cricicisms that he's made that others have made is that while using a

A. I know there are a lot of people that are eurrently writing papers that are critical of certain aspects or it, in particular the population genetics aspects, and in fact what you put into evidence, Which is the thing that \(I\) sent to the National Academy, is the core of something that I'm going to write in response to that paper. There are others as well, so the only answer \(I\) can give you is that It's going to take some time and some argument before all of the kinks are worked out on both sides to everybody's satisfaction, I suspect. Doctor, in your opinion, how much confidence would you have in the reliability of the approach taken by the \(F B I\) and the \(R . C . M . P\). in their fixed bin method to declare calculations of probabilities? Well, I think as \(I\) pointed out here, if I do calculations \(I\) come up with differences from one in 12,633 for a 5 -band match to one in 666 bililon I do not find that reassuring in making a deciaion about what probabilities to use in forensic cases. There are still empirical probabllity estimates that can be derived from these that almost nobody would argue about, they're just bigger than the ones Ehat are currently pregented, and thoge empirical probability estimates have to do with the ract that if you have a data base you can state unequivocally how many times you've seen a complete genotype that matches one that you're interested in, a suspect or a vietim, and you can divide that by the total number of individuals in the data base if you've never seen it before, and that gives you a probabilit that most of the problems - the only problem that
```

would still be a problem for that probability is
if you have extreme substructure, true inbred
isolates that are so different from the rest of the
population that they coulon't be handled even by
that kind of empirical estimate, they'd need their
own data base.
Q. Doctor, based on the empirlcal evidence that you do
have before you, would you have any suggestions
how the R.C.M.P. ought to alter their method?
What has to be done?
Well, I mean, I have suggested one, and I suspect
that they're doing it, I just - maybe they're not
finighed yet. One thing that I would do in Canadals
certainly have a comparison between French-speaking
Canadians and English-speaking Canadians, the two
olggest groups, the two most likely on the basis
of what I've seen so rar that I would predict would
be different, and if they are, then you'd need a
data base for each rather than a general Caucasian
data base. That would go some way towards it. The
other possibility is to simply do what they do, and
they do it, I think, better chan the other rorensic
groups. They exclude a lot of suspects rather than
just say, here's a match, and we have no idea how
many other people may have committed this crime.
They spend a lot of time on other suspect samples.
When you do that the probability, I think, becames
less important, and not having it ac all really
doesn't make that big a difference.
Now, Doctor, I'm going to recall the evidence given
by Dr. Fourney as to the rebinning of the R.C.M.P.
population data base, and what I understood his

```
testimony that when they rebinned it they found that there was five people in the data base who matched across the five probes, so therefore they removed those five on the assumption that they tested the same person twice. Would that be a proper scientific call to make without knowing where the samples come rrom?
A. No, but it would explain why people have, "never found five-band matches between unrelated individuals \({ }^{n}\), which has been testified to in a number of cases. In my own opinion, I think that unless you know that it's the same individual one could assume that they were actually true random matches and therefore it's not probably appropriate to throw them out. What did happen, and \(I\) think Why they did it that way, is the FBI did find - were notified by one of the people that provided them With a data base that there were a number of repeats that they discovered, and the FBI went in and found those repeats and removed them and then went into a different data base that they had and cound the five-band matches or four-band matches, I think in their case, and removed some of those as well, so it stemmed from the fact that one of the blood banks did tell the \(P B I\) that they knew they had the same individuals multiple times, and that's always going to be a problem if you have tood banks because individuals do contribute more than once to blood banks. Some of them do it for money.
MR- FURLOTTE: My Lord, I believe I'm practically fipished with chis witness and maybe if we had an early luneh break and \(I\) may have one or two questions
```

 -60 - Dr. Shields - Direce
 (Voir Dire)
 after lunch and I may not, but I would like the lunch
 recess to decide.
 THE COURT: Yes, that's rair enough. It's quarter past
tmelve now and it will give you a chance to decide
whether you have any'more examination. Have you
any idea at this time how long crose-examination -
MR, HALSH: Oh, I would think, My Lord, if Mr. Furlotte is
done very shortly after lunch I wouldn't expect
I'll be too long with Dr. Shields.
THE COURT: Yes, I mean you'd finish thig afternoon?
MR. WALSH: Oh, yes.
THE COURT: You wouldn't go over until tomorrow?
MR. WALSH: No, My Lord, I'll make that prowise, yes, My
Lord.
THE coURT: You better be careful with your promises.
MR. WALSH: I know, My Lord, but I'Il make that promise.
THE COURT: I'm just doing this for your benefit, Doctor.
A. I know, I appreciate it.
THE COURT: It looks as though you might be able to get
away from our rainy clime this evening.
A. Back to the rainy Adirondacks.
THE COURT: Yes, it will be probably no better there. 0.k.,
we'll recess till one-thyrty.
(LUNCH RECESS - RESUMED AT 1:30 p.m.)
(ACCUSED IN DOCK.)
DR. SHIELDS RESUMES STAND:
THE COURT: O.K., Mr. Furlotte?
MR. FURLOTTE: Doctor Shields, when you were celculating
the improbability of events in the iegere case about
Murphy matching Legere and Legere with Donna and

```
A.
Q. Would you be able to make a correction on that? A. Actually, if you're going to Xerox it and put that in evidence it's easier to put the zero on the Xerox.
Q. And maybe, My Lord, we could do that so we could put this into evidence and it would be clearer for your notes and maybe for cross-examination.

THE COURT: This amounts to a summary of the evidence that was given earlier.

MR. FURLOTTE: yes.
The coupi: You haven't seen this yet, Mr. Walsh?
MR. WALSH: No, if it's a summery of what he said I have no objection to that.

MR. FURLOTTE: We can put lt back on the overhead and he could just explain it again if the court wishes.

THE COURT: Mr. Pugh, why don't you take this out, make a Xerox, bring a copy in to Dr. Shields, let him make the correction, and then take \(1 t\) out and ame a reb more copies. Mark it as an exhibit first, that would be VD-l37, and make rour ar rive copies of it and Mr. Furlotte can have one, Mr. Walsh and myself and anybody else.

MR. FURLOTTE: O.K., now, Doctor, there was evidence at this hearing on whether not the probability of factors could be deteroined as to what the chances were of two hair samples from two different indiviouals
```

being at the same place and the game time and that
the frequency of the hair sample - somebody else
having that hair sample, was one in 4,500.
MR. WALSH: Objection, My Lord, on relevancy.
THE COURT: Well -
Mr. FURLOTTE: On relevancy?
THE COURT: Yes.
MR. WALSH: I want to know what -
MR. FURLOTTE: We covered all this in the Crown's case -
MR, WALSH: He covered it on cross-examination over my
objections upon objections upon objectlons where
he's trying to equate probability of guilt with
probability of whether two samples matched. Dr.
Shields is a population geneticist, he's here for
the purposes of determining the population genetic
issues associated with DNA samples, not for the
purpose of determining whether or not two hair
samples can be found in the same room at the same
time.
MR. FURLOTTE: I don't think it's anything to do with -
THE COURT: No, would you just state your question again.
Mr. Furlotte, so I grasp it again?
MR. FURLOTTE: I'm asking the doctor if it would be possible
to calculate the rrequency that one wight expect to
find two hair samples from different people at the
same time in the same place when that rrequency for
one would be one in 4,500 ror - these would be the
probabilities that somebody else out there might
have the same hair sample as myself would be one in
4,500. Is it possible to calculate the rrequency
that myself and somebody else with hair exactiy like
myselr, except for DNA purposes, would be at the

```
```

-63-Dr. Shields - Direct
(Voir Dire)

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{same place at the same time?} \\
\hline & aren't we, and not hair samples? \\
\hline \multicolumn{2}{|l|}{MR. FURLOTTE: Well, that's for the doctor to decide, My} \\
\hline \multicolumn{2}{|r|}{Lord. . That's what I want to ask him this question.} \\
\hline \multicolumn{2}{|l|}{THE Court: well, O.X.} \\
\hline \multicolumn{2}{|l|}{MR. FURLOTTE: Are you able to use the product rule in} \\
\hline \multicolumn{2}{|r|}{this to come to a figure or would it be one in} \\
\hline \multicolumn{2}{|r|}{4,5007} \\
\hline \multirow[t]{5}{*}{A.} & If they're statistically independent I can't tell \\
\hline & from the data because \(I\) don't know about hair data \\
\hline & bases, but if they were statistically independent \\
\hline & you would multiply the two probabilities together, \\
\hline & which would be an exceedingly low number. \\
\hline \multirow[t]{11}{*}{Q.} & Now, Doctor, last night I belfeve I gave you copies \\
\hline & Of the transcript to read Dr. Carmody's criticiams \\
\hline & and Dr. Kidd's criticisms on your comparing the \\
\hline & PBI data base with the R.C.M.P. data bage and I \\
\hline & believe you found there was a statiotically \\
\hline & eignificant difrerence and the testimony of Dr. Kidd \\
\hline & and Dr. Carmody was that although there was \\
\hline & statistical difference in the oin frequencies the \\
\hline & end result there was no meaningful difference. Do \\
\hline & you have any comment on that and what the real \\
\hline & distinction ought to be made because of that finding? \\
\hline \multirow[t]{7}{*}{A} & The way you've asked that question I'm not sure I \\
\hline & can answer it. What I would say is that we probably \\
\hline & have a difrerence or opinion as to what the word \\
\hline & meaningrul means. I personally do not belleve that \\
\hline & order or magnitude differences, regardiess of how \\
\hline & big or small the numbers are, are meaningless even \\
\hline & in the forensic sense, as I tried to indicate eariiar \\
\hline
\end{tabular}
```

- 64 - Dr. Shields - Direct
(Voir Dire)

```
```

A dirference of one in a million and one in ten
million to me is a significant difference, both in
a practical sense as well as in a statistical sense.
and if there are statistically significant
differences, then I think that somehow or other
those statistically significant oifferences should
be taken into account in the calculations that
produce the probabilities of coincidental matches.
Dr. Kidd and Dr. Carmody differ in their opinion,
and I know other people that share my opinion and I
know other people that share theirs.
Q. Under the circumstances where you found the differenc
would it be proper to use either data base?
Proper ls a term that makes it difficult again to
answer. I'm not sure what you mean by proper. You
could use either data base. You could use both
combined. I'm not sure you should use either. I
can't myself make a distinction. If I were going to
use one and only one I would use the one chat gave
the highest probability because that would be the
most in keeping with, I believe, Canada's innocent
until proven guilty as well as the U.S.'s.
You said maybe you shouldn't use either. For what
reason would you state that maybe it's not right to
use either data base?
The data that are there, the actual differences
that you see, are Indicative that there may be
greater differences in the particular sample that
you're looking at. The ract that there are
differences at the level or the whole Canadian
population versus the whole U.S. population implies
that it's at least possible there may be even

```
```

greater differences between New Brunswick and the rest of Canada. Until you know that that's not the case, then the difference between one and I believe Lt's five million and one in 9.9 million may actually turn out to be a difference of one in 400,000 veraus one in 5.2 million, and you don't

``` know.

MR. FURLOTTE: I have no further questions.
THE COURT: Thank you very wuch, Mr. Furlotet.
CROSS-EXAMINATION BY MR. WALSH:
Q. Dr. Shields, before the break this morning Mr.

Furlotte asked you a number of questions related to
certain matches or calls that Dr. Bowen made, and
you reviewed them. Just so we can clarify it, you
didn't disagree with anything that Dr. Bowen -
anything that you were referred to by Mr. Furlotte,
you didn't aisagree with any of the calls that Dr.
Bowen had made in that regard, did you?
A. I did not.
Q. In fact, Doctor, one of the witnesses in this
particular case, Dr. John Waye, you know him, don't
you?
A. Imet him at a previous -
Q. In the Bourguignon hearing?
A. That's correet.
Q. And you've alluded to it this morning in relation to Dr. Waye's work. I believe to quote your words you say that the autorads in that particular case Were, "They were better run than anybody I've ever
seen berore".
A.

That's correct.
Q. I would take it that you believe Dr. Waye is a
person of great skill?
A.
0.
A.
Q.
A.
Q.
Q. You also, Doctor, at that particular provision - I
```

 -67-Dr.Shields - Cross
 (Voir Dire)
    ```

\begin{tabular}{|c|c|}
\hline & Januery. This is a fast-moving field and \\
\hline & publications are appearing literally on a weakly \\
\hline & basis. \\
\hline Q. & O.X., maybe we could just touch on that because I \\
\hline & intend to go into that a little bit more depth. \\
\hline & Nichols and Balding - correct me if I'm wrong, you \\
\hline & referred to a correction ractor? \\
\hline A. & That's correct. \\
\hline 0. & And the correction factor is to allow for what? \\
\hline & What is the purpoge of the correction factor? \\
\hline A. & To correct for substructure. \\
\hline Q. & And that would be related to inbreeding, for \\
\hline & example, isolated sub-populations? \\
\hline A. & It would be related to either selection or \\
\hline & non-random mating generating allelic difrerences \\
\hline & between sub-populations within what we call the \\
\hline & meta-population. \\
\hline Q. & And hence the comparison that you made in one of \\
\hline & the exhibits between the Legere case that the FBI, \\
\hline & R.C.M.P. and the Nichois and Balding - using the \\
\hline & Nichols and Balding correction factor; is that \\
\hline & correctî \\
\hline A. & Right. \\
\hline Q. & O.X. Well, we'll get onto that, Doctor, in a short \\
\hline & time. I just wanted to clarify that. Doctor - so \\
\hline & we'll leave the molecular genetics part of it, the \\
\hline & molecular biology part, and I'o like to get into \\
\hline & the population genetios aspect because that is the \\
\hline & one where your opinion is that we're not quite \\
\hline & ready yet, we don't have enough information, is \\
\hline & that correct? \\
\hline A. & That's correct. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Q.} & You're not comfortable is one of the words you \\
\hline & used. \\
\hline A. & That's correct. \\
\hline \multirow[t]{4}{*}{Q.} & Again, Doctor, population genetics, it has really \\
\hline & two aspects, does it not? Now, correct me if I'm \\
\hline & wrong. One or the aspects would be the theoretical \\
\hline & or mathematical aspect. \\
\hline A. & That's correct. \\
\hline \multirow[t]{3}{*}{Q.} & The methods you're using are statistical, the \\
\hline & methods that are applied in population genetics \\
\hline & are actually statistical methods, right? \\
\hline A. & Arithmetic and statistical, yes. \\
\hline \multirow[t]{5}{*}{Q.} & And in that regard population geneticg is a single \\
\hline & discipline, single disciplinary aspect in that \\
\hline & regard in the sense that all population genetics \\
\hline & Use mathematical formulas and theories that have \\
\hline & application throughout the organism? \\
\hline A. & Yes. \\
\hline \multirow[t]{3}{*}{Q .} & There is another aspect, Doctor, to population \\
\hline & genetics, and that is the empirical work; am I \\
\hline & correct? \\
\hline A. & Indeed. \\
\hline \multirow[t]{4}{*}{Q .} & And when we talk about empirical I'm referring to \\
\hline & looking at a particular type of population to see \\
\hline & now the theory impacts. Hould that be a fair \\
\hline & statement? \\
\hline \multirow[t]{4}{*}{A} & That's one way of making the statement. Another \\
\hline & way would be that you use a particular empirical \\
\hline & system to test the theory and to inform the theory \\
\hline & and to generate new theories. \\
\hline \multirow[t]{3}{*}{\(Q\)} & Yes. to see whether or not the mathematical \\
\hline & calculations and the formulas that are adopted, \\
\hline & whether they apply to the particular organism that \\
\hline
\end{tabular}
you're studying? Am I right?
A. Or how they apply, sure.
Q. Or how they apply. I would take it that the
emplrical work is an important aspect of any
population geneticist's work, am I not right? The empirical study is very important?

Science works as a discipline, it's a social social relationships between scientists. There are empiricists, there are theoreticians, and there are some people who do both. All of them together are important in understanding a particular seientific discipline.
Q. But, Doctor, you also do empirical work in your own field, don't you, in the particular population genetic aspect that you apply?
A. Yes, I do.
२. You do empirical study?
A. Yes.
Q. You also use mathematical models and theories to - when you're looking at your - your empirical work is certainly important to you?

Yes, it is.
And important to your work, you know, to make it valid. Your validity associated with the statement that you make regarding the populations that you're looking at, it's important for you to empirically look at these populations, is it not? AR I correctp Yes.
I've read some of the transcripts and you're very
particular about the words that are used so I'll
try and be careful and you correct me if \(I\) use
something that has no meaning to you. I was looking
\begin{tabular}{|c|c|}
\hline & at your C.V., and would it be fair to say, Doctor. \\
\hline & that your professional experience, putiications, \\
\hline & and interest primarily lie with respect to animal \\
\hline & populations? \\
\hline A. & Sure, that'g rair to say. \\
\hline 0. & In fact, what is your - what kind of animal \\
\hline & populations have you studied, Doctor. your \\
\hline & empirical work, what kind of population? \\
\hline A & Swallows, chipmunks, beaver, wolves, beetles, as in \\
\hline & b-e-e-t-1-e-s, the insect. \\
\hline Q. & That's Why Hawail is important? Hawail has some \\
\hline & kinds of insecty that - \\
\hline A. & Hawaii is wonderful for looking at drosophila. The \\
\hline & Hawailan drosophila are - \\
\hline Q. & And wolves, you've studied Mexican wolves? \\
\hline A. & Mexican wolves, that's correct. I've actually only \\
\hline & seen Mexican wolves in a zoo. We studied Mexican \\
\hline & wolf blood on gels. \\
\hline 0. & But, Doctor - so I take it, then, you would be \\
\hline & considered with respect to your empirical work - \\
\hline & What would you be considered in terms of \(a\) \\
\hline & population geneticist, what kind of sub-specialty \\
\hline & would you have under the umbrella of population \\
\hline & geneticst \\
\hline A & Oh, I would gay because of the slant of the kind of \\
\hline & work I do there are two different aspects of it. \\
\hline & One would be conservation genetics. We use RELP \\
\hline & techniques and other genetic techniques to look at \\
\hline & the conservation of organisms. We use the systems \\
\hline & that I was talking about as model system. \\
\hline Q. & What kind of organisme? \\
\hline A. & Chipmunks, rattlesnakes, endangered species. \\
\hline
\end{tabular}
```

-72 - Dr-Shields - Cross
(Voir Dire)

```
Q. So animals as opposed to homo sapiens?
A. Yes, and then the other is we use it for behavioural purposes. We are interested in looking at paternity and maternity and excluding and including individuals as potential parents.
Q. Of the animal populations?
A. That's correct.
Q. Now, Doctor, I take it that there are also population geneticista that do primarily their work, their empirical work, with human populations? Yes, there are.

And as a result there would be those that would be recognized as human population geneticists as distinet from animal population geneticists? Let me just tell you what I hould use. I would not use the word population genetics for what you're talking about. When you do the empirical work and run the gels and go out and look at how genes are interacting in the environment a lot of people, me included, would call it ecological genetics or they would call it just evolutionary biology in general, and the population genetics aspects of it are actually the theoretical sides, and that's what I was trying to say, there are sooe people that are dosng pureiy theoretical population genetios, most of them are Japanese, and there are other people that are doing both, and they come from a variety of different places, and there are some that jugt do empirical work and literally call themselves ecological geneticists, so some of these distinctions you're waking are not ones that \(I\) would make.
Q. But there are two distinct - you do empirical work
```

 -73 - Dr. Shields - Cross
 (Voir Dire)
 in your work ano population geneticists do
 empirical study, do they not? They study particular
 forms of organisms, am I correct?
 A. Yes and no.
 O. Yes and no. It's not a very hard question, Doctor.
I want to know whether there are population
geneticists out there who study animals and whether
there are population geneticists who spend
primarily their time gtudying human beings?
A. Well, you jugt gaid primary of their time. There
are lots of geneticigts that spend a lot of time
studying numans and a lot of time studying plants.
Let's take a population geneticist -
Alec jeffreys.
Let's take -
MR. FURLOTTE: Let him finish the question, please.
Q. Let's take the position, let's take -
MR. FURLOTTE: Let him finish his answer, rather.
Q. Alex Jeffreys, all right, go ahead, Doctor.
A. He's the one who started forensic DNA typing, I
think you know that.
Q. Yes.
A. His lab spends half the time on humans and halr the
time on birds.
Q. I'm not talking about labs, I want to talk about
particular -
THE COURT: Well, you're cutting in on the witness, Mr.
Walsh, not giving him a chance to finish completely,
You were saying, Doctor, his lab spends half its
time on humans, half its time om animals?
A. That's correct.
THE COURT: And then were you going to -

```
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
-74-D r . S h i e l d s- & \text { Cross } \\
& (\text { Voir Dire) }
\end{aligned}
\] \\
\hline A. & And he publishes papers that have to do with \\
\hline & whether sparrows are the parents of the kids they're \\
\hline & supposed to do, O.K., 30 is he a human population \\
\hline & geneticist or a population geneticist, or a bird? \\
\hline \(Q\). & So you recognize no one as a human population \\
\hline & genetlcist? \\
\hline A. & Yes, I do. If people work exclusively on humans \\
\hline & then I would call them human population geneticists \\
\hline & or ecological geneticists. \\
\hline Q. & Fine, and someone who, for example, Doctor, who has \\
\hline & done post-doctoral work in human population geneticb \\
\hline & someone who has studied human populations for 25 \\
\hline & years, wouid you consider him a human population \\
\hline & geneticist? \\
\hline \(A\). & Yes, if they spent \(95 \%\) of their time working on \\
\hline & numans, sure. \\
\hline 0. & Would Dr. Kenneth Kidd, would you consider him to be \\
\hline & a human population geneticist? \\
\hline A. & Yes. \\
\hline Q. & And in fact in January, Doctor, all you would \\
\hline & recognize him for is m molecular blologist? In \\
\hline & Bourguignon you were put the question - the questioj \\
\hline & was put to you who Dr- Kenneth Kidd was and all you \\
\hline & recognized bim for then was a molecular biologist. \\
\hline A & He does molecular work in human genetics. He has \\
\hline & not developed population genetic theory. I would \\
\hline & say that he's better known as a molecular populatiou \\
\hline & genetics in humans than he is as a population \\
\hline & genericist. \\
\hline Q. & You're going to make a statement here today, Doctor \\
\hline & that you do not consider Dr. Kenneth Kidd to be a \\
\hline & human population geneticist? \\
\hline
\end{tabular}
A.

Q

We're having a semantic argument.
Well, \(I\) just wanted to get a clear answer.
Let me make it easy ror you. Ken Kidd is a
wonderful scientist, he does excellent work, he's well-known, he's well respected. When you used the word population geneticist what \(I\) think of is people like Sewell Wright, people like Haldane, people like fisher, who developed the theory that then I and Dick Lewontin is another who's developed theoryr Cavalli-Sforza?

Cavalli-Sforza hasn't done that much in the development of the theory, no. He's a human geneticist, probably the best known human geneticist in the worio. That's what \(I\) wanted to know, Doctor. You consider Cavalli-Sforza a human geneticist, don't you? A human geneticist, but you're using the word population geneticist in a different way than \(I\) do. Do you remember what kind of book that Cavalli-sforma wrote, Doctor?

What kind of book? He's written a number of different books.

Has he not written a book with respect to population genetics?

Sure.

And he's a human population geneticist?
Again, using your definition, yes. My derinition In that discussion in January of Ken Kidd had to do with people who developed the theory versus people who use the theory. That's all there is to it.

Do you consider Ken Kidd today a human population geneticist?
A. Using your definition, yes; using my definition, no.
Q. What's my definition, I'm confused?
A. Someone who is a population geneticist, who uses
population genetic tools and empirical analyses
of data using molecular techniques and is a human
geneticist. Under those conditions anybody who
does human genetics is a human population geneticist.
Would it be an easier definition, Doctor, that a population geneticist, a human population geneticist,
is someone who spends primarily all of their time
studying human populations as opposed to studying chipmunks and rattlesnakes and barn ewallows?
    And I take it you would try to get yourself in
        under that definition?
A. I have done a little bit of that, not like ken Kido.
Q. No, you're not going to suggest, Doctor, that you are anywhere in the league of Ken kidd in terms of a human population geneticist, are you?
A. In terms of a human population geneticist?
Q. As a human population geneticist, as I've defined it, as you say I've defined it, you're not going to suggest that you're of the same qualifications. same experience, as Dr. Kıda?
A. In terms of population genetic theory I'm not that different than Ken Kidd.
Q. You will not acknowledge that Dr. Ken Kidd is a human population geneticigt of a rank different than you?
A. A rank different?
Q. Do you consider yourself a human population geneticist, Doctor?
A. No, \(\quad\) consider myselr a population geneticist.
Q. Fine, and you would consider Ken Kidd to be a human population geneticist?
A. I think \(I\) 've answered that question four or five times now saying both yes and no depending upon how you wish to phrase the question.

I gee. Demography, Doctor, do you deal with demography in your work?

Yes, I do.
Q. And demography, I take it that - you will not agree that there's any such thing as human demography?

Sure, there is, people who work on humans.
And would you be considered to be a human demographer or have a specialty or any expertise in human demography?
\[
\begin{aligned}
&-78 \text { - Dr. Shields - Cross } \\
& \text { (Voir Dire) }
\end{aligned}
\]
Q.
```

 And would you define for us, please, what human
 demography is or what demography is and what human
 demography is?
 Demography is using population dynamics tools to
look at how populations ~ the dynamics of populations
If you use population dynamics tools exclusively
for human populations we would call you a human
population demographer and usually you work for an
insurance company.
Q. Oh, you work for an insurance company. Hould human
demography have anything to do with - or have any
application to the questions of substructure?
A. Human demography?
Q. Yes, an expertise in demography, and pareicuiarly
human demography?
A. Would have anything to do with substructure?
Q. Would it have a bearing on the questions of
substructure and stratification, things of that
particular neture? Well, let me read you a
statement of Dr. Kidd, and perhaps so you won't
think I'm using these terms willy-nilly, all right?
O.K.
Dr. Kidd testified in his direct examination on
May l4th, it is part of his qualifications, I
asked him, "Doctor, what is demograpiy, if I have
pronounced it right, and what application would that
have to population genetics and human population
genetics in particular", and he said, "Demography
would be the study of population structure with
respect to age and sex dirferences, reproductive
patterns, stratification, and in many of those way*
it is very intimately related to human population

```
A.

\begin{tabular}{|c|c|}
\hline & demography of a plant, a bacteria, or a huoan. \\
\hline & The principles are the same. \\
\hline 0. & And there would be no difference when you applied \\
\hline & it to humans? \\
\hline A. & There is no difference when you apply the \\
\hline & principles. \\
\hline \(Q\). & The principles, Doctor, but there is - you \\
\hline & acknowledged earlier that there was such a thing \\
\hline & as human demography? \\
\hline A. & There are people who study only the demography of \\
\hline & humans. \\
\hline Q. & Humans, correct, and what we're dealing with here, \\
\hline & Doctor, is humans, are we not? The whole issue \\
\hline & that we're dealing with here is humans? \\
\hline A. & That's correct. \\
\hline 0. & And I've read a quote to you that you apparently \\
\hline & agree with from Dr. Kidd in relation to the \\
\hline & application of human demography to the losues that \\
\hline & we are involved with here. \\
\hline A. & That's correct. \\
\hline Q. & So you do not - you heven't taught human demography, \\
\hline & for example? \\
\hline A. & No, I have not. \\
\hline 0. & And what you're saying is that you have a \\
\hline & theoretical understanding of demography generally \\
\hline & because you have to apply aemography to barn \\
\hline & swallows, etc.? Am I right? \\
\hline A. & That's correct. \\
\hline \(Q\) Q & But there are people who actually develop a greater \\
\hline & expertise in a particular area, for example the \\
\hline & demography of humans, would you agree? \\
\hline A. & There are people - sure. Yes, sure. \\
\hline
\end{tabular}
Q. Are you aware of Dr. Ken Kidd's credentials in that particular regard?
A. Sure.
Q. And he has a specialty in human demography over and above what you have actually developed? Absolutely, and Dick Lewontin has a specialty in human demography even better than his.
Q. No, no, but I just want to know about you. No, I don't wani to know about Dick Lewontin, I want to know about you.
A. on, sure.
Q. But Dr. Kidd would have that specialty over and above what you would have?
A. That specialty.
Q. Yes.
A. \(\quad\) ie has more knowledge of the empirical data that are associated with humans than \(I\) do, without a doubt.
Q. Therefore he would have more knowledge by the very definition, more knowledge of the empirical data related to substructure in the human populations in this world than you do? That \(I\) would not necessarily agree with. Are you going to make rlat denial of that gtatement, Doctor? Not a flat denial, but \(I\) have studied human substructure extensively.
Q. Yes, but what you've just pointed out, Doctor, is that human demography has particular application to the questions of substructure. O.K., I will try my best to explain to you why we seem to be arguing when really we're not, 0.K.?
```

- 82 - Dr. Shields - Cross
(Voir Dire)

```
Q. I'm not arguing.
A. Demography is one of the potential causes of
    substructure. One can go out and look at the
    alleles and rind substructure without understanding
    why, whether it is purely non-random mating, whether
    it's selection, how those two interact, whether
    it's drift. The question of demography only comes
    in if you're interested in teasing apart the actual
    causes for the gubstructure. The causes for the
    substructure are totally irrelevant to forensie
    DNA typing. If there is substructure that's what
    matters, not how it came to be.
Q. Are you suggesting, Doctor, that if you don't know
    the cause of substructure that has nothing to do -
    are you suggesting that the cause of substructure
    is irrelevant to the question of whether sub-
    structure exists in the human populations?
A. Yes, I'm saying you can independently find
    substructure without having any knowledge of how
    It came to be.
Q. But anyone who had an actual undergtanding of the
    causes of substructure would certainly have a
    better idea of the effect or substructure and the
    degree, would you not?
A. No, you're wrong. If it's there it will have a
    consequence on probability calculations as they
    are practiced in forensic typing regardless of why
    they are there.
    But, Docior, I thought you - part or your tegtimony
    was that we aon't have enough data yet, in your
    opinion, to determine the extent or the effect of
    substructure.
\[
\begin{aligned}
& \text { - } 83 \text { - Dr. Shields - Cross } \\
& \text { (Voir Dire) }
\end{aligned}
\]
A. That's correct.
Q. Well, wouldn't you think that knowing or having some understanding of the causes of substructure would be of some benefit in understanding that question?
A. He do.
Q. But you pointed out fust a few minutes ago that you don't have to know the causes of substructure. No, all you have to know is whether it exists or not. We know prior to the development of forensic DNA typing that in fact there is substructure in a variety of genetic systems. Protein electrophoresie has illustrated it for a variety of human populations When you do blood typing, that has fllustrated it as well. Over and over again we've seen substructure, we'see genetic differences between small tribes of indians, we see ethnic differences in allele frequencies for a variety of genetic systems. We've seen all of that. What's missing is the evidence about the explicit \(v N T R\) alleles that are presented in rorensic DNA typing, and what the EBI and R.C.M.P. said inltially was - and Ithink I'm pretty elose to quoting - there is no evidence for substructure at these VNTR alleles, even if there is evidence for subatructure at the others. Well, it turns out in the past few months there is now evidence for substructure at VNTR alleles.
Q. And you have read, according to Mr. furlotte, you have read the transcripts of Dr. Kidd and Dr.

Carmody.
A. Not the entire transcripts.
Q. Oh, you haven't? You only read a little bit or it?
\begin{tabular}{|c|c|}
\hline A. & What he gave me. \\
\hline \multirow[t]{2}{*}{Q.} & Well, you must have read other transcripts of Dr. \\
\hline & Kidd? \\
\hline \multirow[t]{2}{*}{A.} & I have never read a transcript or Dr. Kldd until \\
\hline & this time. \\
\hline \multirow[t]{2}{*}{Q.} & You have never read a transcript or Dr. Xidd's \\
\hline & evidence in any court room in the United states yet? \\
\hline \multirow[t]{2}{*}{A.} & I have read reports on his transcripts rrom the \\
\hline & Yee trial. \\
\hline Q. & You have not read the transcript in Yee of Dr. Kiddl \\
\hline A. & Maybe I did, I don't remember. I don't think so. \\
\hline 0. & You have not read the transcript in Jakobetz? \\
\hline A. & No, I have not. \\
\hline Q. & You have not read the transcript in Hesley? \\
\hline A. & No. \\
\hline Q. & Or in spencer? \\
\hline A. & No. \\
\hline \multirow[t]{4}{*}{Q.} & You realize, Doctor, in lee Dr. Kidd's testimony \\
\hline & With respect to population genetics and the effects \\
\hline & of substructure would seem to have been accepted \\
\hline & over and above everyone else's? You've read that? \\
\hline \multirow[t]{2}{*}{A} & Yes, I have, and I also read Dan Hartl's analysis \\
\hline & of those oata and his conclusions about those data. \\
\hline \multirow[t]{2}{*}{0.} & Weren't you curious to know, Doctor, what Dr. Kidd's \\
\hline & words were in that case, what his testimony was? \\
\hline A. & I have his data. \\
\hline Q . & Weren't you interested in his opinions? \\
\hline \multirow[t]{2}{*}{A.} & I can independently look at what his data means \\
\hline & without worrying about his words. \\
\hline \multirow[t]{2}{*}{Q.} & Do you mean that you have never actually read his \\
\hline & opinions from his mouth in a court room? \\
\hline A. & That's correct, except I think I read pieces of the \\
\hline
\end{tabular}

```

 -86 - Dr. Shields - Cross
 (Voir Dire)
 THE COURT: Yes, well, I think you should, perhaps, be a
little more precise in quoting if you're going to
examine -
MR. WALSH: Oh, yes, certainly. I've jugt gone to get the
case book. I was kind of surprised when the doctor
indicated he'd not read the transeript, so you have
not read the judgment in Yee, or have you?
A. No, I did.
O. You did read the judgment?
A. That's what I just told you
Q. O.K., and from your remembering or your memory of
the fudgment, Dr. KIdd's testimony was what? What
Impact did you get from reading it, what was the
impact of big tegtimony on the judge in Yee?
A. I'm sure it was positive because he did decide in
favour of the prosecution. My statement was very
simple. What I remember was the magistrate
strongly saying that me relied most heavily on
Caskey's testimony because Caskey had the most to
lose if his testimony was incorrect.
Q. I see, you read Caskey's testimony, then?
A. No, I didn't
Q. You didn't read his either, then?
A. No
Q. WeIl, Doctor, are you suggestimg that you have,
then, all the information that's necessary for you
to come to court here today and give opinions with
respect to things like population structure?
Absolutely, I presented the data. yes.
You presented the data but you have never actually
read these experts' testimony, Caskey, Kidd?
A. No, I've read their papers when they publish on it.

```
Wouldn't you be interested in knowing what, for
example, an expert has to say about his own data
and how that impacts, for axample, on something
else? Wouldn't that opinion be important?
A. Say that again slowly, pleasa.
Q. Well, let me take you to the Amerindian data that
you keep referring to and that we're going to get
to in a second. Dr. Kidd gave an oplnion in this
court room about that, ion't that of interest to
you as to the impact that would have on the
Caucasian populations in Canada? Houlon't that
have some interest to you?
A. No.
Q. His own data, the Interpretation he puts on his own
data and how that applies, that would be of no
benefit or no interest to you, Doctor?
report, what he said that \(K e n\) Kidd said, and reading
what I read here that Ken Kidd said in this
particular case, over and over again Ken Kidd has
said that UNTR variation does not exist or it
doesn't exist at a surficient level and that
testimony has changed.
Q. I see, this is what you're interpreting from who?
A. Harti's.
Q. Oh, from Hartl, oh, I see, and you're interpreting this as opposed to going and finding out for yourself what Dr. KIdd sald, is that right?
A. I would presume that Hartl, since it's a signed arfidavit, swear to tell the truth, the whole truth and nothing but the truth I see, you put a lot of raith in that.affidavit? Yes.

Perhaps if you'd just give me a second, Doctor. you kind of took me by surprise when you made your comment there about what your understanding of the Yee case was. I believe you'll find it in a footnote. Is Dr. Caskey a population geneticist? He's a human medical geneticigt, primarily. Yes, but you indicated that you didnte consider them to be human population geneticists, you didn't consider them to be that. The judge says in Yee, and I'll quote from Page 91, I wonder if this will improve your recollection of the particular case. He says at page 91 of the - it's the unpublished Judgment -
A. I've only been able to see the published judgment.
Q. Well, it would be the same thing, Doctor. "In making my determination \(I\) take note of the relative professional stanaings of the prosecution witnesses and the defence witnesses regarding the band shift 1ssue". Now, that's with respect to the biology, is that not, and he refers to, "Doctors Conneally, Caskey and Kidd have been selected by invitation for membership in the Human Genome organization and Dr. Caskey is President of the American Society
```

of Human Genetics. These professional accomplisin-

```
ments are a manifegtation or esteem on the part of
professional colleagues at the highest level or
their disciplines. In addition co the scientific
stature and judgment that such election implies,
participation in the activities of such organization
and effiliation with fellows of that rank gives
such individuals, I believe, a somewhat better
basig on which to gauge the views of those
colleagues about the acceptability of new develop-
ments related to their discipline." Do you remember
that?
Q. It says: "Many times witnesses have an interest
in the outcome of proceedings and consideration of
that ract is an important means of evaiuating the
accuracy of their testimony. The government's
witness find themselves in a position defending a
process that is under a vigorous attack. As they
entered this hearing and throughout their testimony
which touched on all pertinent subjects of a
scientific dispute they had the ability to express
reservations about the extent of their colleagues
approvai or the Bureau's performance of its case
work. In that way they could minimize the potential
damage to their professional reputations and steture

```

issues was accepted over and above the other
pre-eminent population geneticists that testified
in Yee.
A. I can only just state something that I think is
reasonably simple to state and perhaps understand.
The judge's deciaion about that is not what matters
to the scientists.
Q. No, I appreciate that. I can appreciate that.
A. And scientists tend not to worry about the
pre-eminence of other scientists. What we tend to
do is to look at the data, look at what the data
tells us rather than what people tell us.
But, Doctor, 1sn't - and we come back to why we
get into that case book, reading that particular
Yee decision would you not be interested in going
to the transcript and finding out what Dr. Kidd
said about population structure?
I now see what he said in this particular trial.
You didn't reed it all, Doctor, you just pointed
out to me you read a little bit of it.
But it's the piece where he says that ne's
criticizing me for saying there's a problem and
the reason why he thinks - I wonder if he read my
entire transcript, by the way - but in any case,
the reason that he said there's a problem with what
I say is because he doesn't belleve that there's
a practical significance to the kinds of differencess
that he "has never stated that there is no sub-
structure, that there is lots of gubstructure but
that it's not enough to make a difrerence", O.K.?
That becomes a matter of opinion rather than a
matter of what's true or not true. All I've ever
testified is that if there is a difference the

```
```

 - 02 - Dr. Shields - Cross
 (Voir Dire)
 numbers are not going to be precise, they are not
 going to be accurate. Then it becomes a legal
 decision to make a decision about whether they
 should be used or not.
 Q. But, Doctor, wouldn't you be interested in knowing
the opinions, the exact opinions, of a man in a
court room who studied human populations for 25
years?
A. Sure. In fact, I called Ken Kidd twice
impossible to reach ss I am.
But don't you find that would be important to read
the actual transcript of his testimony?
No, I have his paper.
Of the Amerindians?
Yes.
But have you looked at what his opinions were with
respect to the effect of that paper on caucasian -
Scientists don't care. That's what we do, that's
what peer review and acceptance is, we read the
paper which is his opinion, and it's one that's
peer reviewed and one he's put out to the fellow
scientists.
But what you did with the Amerindian paper, Doctor,
is you extrapolated the information there to make
a suggestion that that should be applied to
Caucasian populations -
NO -
- that that is evidence or some -
- I just put it there that there's evidence of
substructure within races.
Q. And wouldn't it be important to know what Dr.
Kidd's opinions are with respect to the erfect or

```
```

 -93-Dr. Shields - Cross
 (Voir Dire)
 his study of Amerindians on the Caucasian
 populations? Don't you think that would be
 important?
 A. No, because I'm not here to talk about this case.
What I'm here to talk about is the general use of
the method. Sometimes there are native American
Indians involved in these trials and then the
Native American differences become critically
Important, and in fact the R.C.M.P. says we're
going to have two data bases, one for Western and
one for Eastern; why?
Q. Maybe we could get thls out of the road, Doctor.
We're not dealing with Mr. Legere here, we're mot
dealing with someone who's an Indian, are we, or any
part of Indlan, to your knowledge?
A. To my knowledge, no.
O. It would be interesting, it would certainly be of
some interest to you, would it not, if in fact he
had an Indian heritage?
A. If he did, then you'o nave to an analysis with an
Indian data base.
Exactly, so you don't know that in ract he is an
Indian, do you? You assume he's French or has a
French background, do you not?
In part, from his last name.
O. And I take it he also would fit within the definitian
your definition of a Caucasian, would he not?
A. I would have said yes except that I was shown some
pictures at iunch.
Q. I see.
A. They were half-Indian and half-Caucasian and you
would never have known there was any Indian blood

```
```

- y4 - Dr. Shields - Cross

```
    in them.
Q. Are you suggesting he's Indian?
A. No.
Q. No. What are you suggesting he is?
A. From his last name I suggested French.
Q. And which is? What race Hould the French belong tol
A. It depends on whether they're Algerians or not.
    It depends on a lot of difrerent things.
    O.K., assume for a moment he's not Algerian.
    He looks Caucasian to me.
    Thank you, foctor. Would you agree that the
    Caucasian oata base that the F.C.M.P. has is an
    excellent attempt at a ramdom sampling?
    I think it's an attempt at a representative sample
    except that it has probably too few French-speaking
    Canadians, from what I've been given to understand.
    Given to underetand. I hope I haven't used a
    word wrong, Doctor. In relation to some questions
    on Bourguignon, the question was put to you at
    Pages 96 and 97: "I want to clear up two things
    about the data base that you may or may not know.
    One is it is not strictly from Ottawa, it is called
    the ottawa data base because it was generated here
    in Ottawa", and the answer was, "O.K.", and the
    question: "But it isn't from the City of Ottawa or
    anything like that, all right, it was gathered for
    that purpose trying to get persons from a large
    number of areas, I suppose across Canada, tinat may
    not be exactly accurate but it had the end result".
    Answer: "O.K.". Question: "or drawing from people
    could potentially come from across Canada". Answer
    "Sure"- Question: "All right, what would you call
```

```
        - 95 - Dr. Shields - Cross
                            (Voir Dire)
    that in terms of a data base". Answer: "An attempt
    and it is probably an excellent attempt at a random
    sample or Caucasians and I don't know anyching about
    English or French-speaking, I would just say
    Caucasian Canadians from across Canada". Do you
    remember saying that?
    A. Isn't that what I just said?
    Q. But when I used the word excellent you mouthed the
    word excellent as if there was something that was
    strange to you. It was the exact words that you
    had used in Bourguignon.
A. This is the first time this has happened to me, Your
Honour, and I'm sorry, but I find that offensive.
    I. don't particularly think it's appropriate for you
    to tell me what I'm thinking.
    You Just uged the expression in the court room, you
    mouthed the words without saying them, excellent,
    as if it was a perplexing question, and I wanted to
    know why you - you used the word yourself, why did
    you have to react in that fashion?
THE COURT: I hadn't noticed this, I don't know whether
    you gid or not. I haven't been -
A. I don't either, Your Honour.
Q. Would you agree, then, that it is an excelient
    attempt at a random sample, Doctor?
A. Ir's an excellent artempt relative to many other
    attempts that I've seen, sure. If everything that
    was just said is true, everything that led up to my
    answer in Bourguignon.
Q. Tell me, Doctor, what is your underseanding of the
    Canadian Caucasian data base? What is it comprised
    Or?
```



```
        -97 - Dr. ShIelds - Cross
        (Voir Dire)
        sampling from were the areas that are representative
        of Canada as a whole, you would consider that to be
        an excellent random sample?
        Yes, or a representative sample, rather.
        A representative sample, because you would expect
        to have representatives from different areas of
        the country, different provinces, different English,
        French groups?
    A. If you can expect that; I don't know.
Q. O.K.,well, let's see if we can show you. I show
        you Exhibit VD-58. Have you seen that before?
        Last nignt for about three seconds.
        All right, what does three seconda tedl you? Take
        a Lew more seconds today.
        That's where I came up with Vancouver, Ottawa, and
        the ontario samples. Those were the armed rorces,
        I presume.
    Ottawa and Kingston area. You go to the next page
        you'll see Kingston.
    Canadian Forces Base, there's the one.
    Now, I'll show you this. It's item VD-6l. Would
    you look at that for me, please, Doctor, and tell
        me if that is of any informationel importance to
        you, Doctor?
        Sure.
        Have you seen that betore?
        No.
        Take a second and look at it, please.
        O.K.
        Now, I'll show you VD-60A, or perhaps I'll go
        through them. VD-59A is Canadian population by
        province in Canada in numbers.
```

A. \quad Mm-hmm, O.K.
Q. And look at VD-60A, Canadian population by province
in terms of percentage representation.
A. Man-hma.

THE COURT: What are you coming to, Mr. Walsh, that 9% of the armed forces at Kingston are from New Brungwickp

MR. WALSH: Well, part of what I wanted to know is how
representative he would consider the data base, particularly in light of his opinions this morning,

My Lord, and VD-62A?
A. O.X.
Q. And VD-63A. In light of your testimony a few minutes ago. Doctor, you would have to agree that that evidence there would indicate that the Caucasian population of Canada as obtained by the R.C.M.P. is an excellent random ample, representative sample, of Canada as a whole, would you not?
A. Yes, absolutely.
Q. You will note there, Doctor, you will agree that
the Province of Quebec has a very good representatipr
on the CFB Kingston ample, do they not?
A. Mm-hma.
Q. And would you also agree that New Brunswick is adequately represented in this particular sample? Do you not?
A. Depends on how you define adequately but it's
represented in the sample at a reasonable rate.
It's about the rate -
Q. O.K., a reasonable rate, O.K., and quedec is
represented reasonably? Right?
A. O.K., let me just show you what I'm getting at.

How many individuals are we talking aoout from


```
```

people from Ontario who are the equivalent or

```
```

people from Ontario who are the equivalent or
regular decks of cards, anc when you do the whole
regular decks of cards, anc when you do the whole
population you average between the two.

```
population you average between the two.
```

```
And the same with New Brunswick, Doctor, you -
```

And the same with New Brunswick, Doctor, you -
Yes.
Yes.
So what you're suggesting is - what you're saying,
So what you're suggesting is - what you're saying,
then, Doctor, is that there's not adequate
then, Doctor, is that there's not adequate
representation, is that right?
representation, is that right?
Adequate representation. What you want is an
Adequate representation. What you want is an
adequate data base for any potential sub-population.
adequate data base for any potential sub-population.
So the representation, the division of representatio:
So the representation, the division of representatio:
on the CFB Kingston tase is not an adequate
on the CFB Kingston tase is not an adequate
representation of Canada, is that right?
representation of Canada, is that right?
Fepresentation -
Fepresentation -
Is that particular -
Is that particular -
It's not an adequate sample.
It's not an adequate sample.
Why? I thought you -
Why? I thought you -
For why I just tolo you.
For why I just tolo you.
Well, I thought you talked about this all along,
Well, I thought you talked about this all along,
Doctor, that it would be and that it was?
Doctor, that it would be and that it was?
It is a representative sample, it is not an
It is a representative sample, it is not an
adequate sample. I have never gaid it was an
adequate sample. I have never gaid it was an
adequate sample.
adequate sample.
Why wouldn't it be adequate, Doctor?
Why wouldn't it be adequate, Doctor?
I just explained it to you, I will try once more.
I just explained it to you, I will try once more.
It is at least possible that the Quebecois are
It is at least possible that the Quebecois are
genetically different from the English-speaking
genetically different from the English-speaking
Canadians. If they are, putting them into a single
Canadians. If they are, putting them into a single
data Dase will merge whatever differences there are
data Dase will merge whatever differences there are
and having this representative sample or all or the
and having this representative sample or all or the
Caucasians is like taking pinochle decks and
Caucasians is like taking pinochle decks and
regular aecks of cards, shuffling them together and

```
regular aecks of cards, shuffling them together and
```

```
        - 101 - Dr. Shlelds - Cross
                            (Voir Dire)
    saying that the rrequency of aces is 12 out of 100.
    When the frequency of aces in one population is
    4 out of 52 and the frequency in the other
    population is 8 out of 48.
Q. So the fact that there's 20 - according to this
    information, the fact that there's a birthplace of
    Kingston military personnel and dependents, there
    are approximately 20 1/2% from Quebec, and in the
    Canadian population Quebec makes up 25.8%, that
    doesn't tell you that you have an adequate
    representation of the Quebec people in that
    particular R.C.M.P. data base, is that what you're
    saying?
A. If what you're trying to do is just come up with
how much genetic variation is in Canadian Caucasians
that's exactly how you'd do it. If what you're
trying to do, please let me rinish -
Q. Go ahead, Doctor.
A. - is develop a probability that someone will
contribute a particular genotype to an evidence
sample, it is not adequate, if there are differences
between the French Canadians and the English-speaking
Canadians.
Q. If there are, you don't know?
A. If there are. I do not know but I do know that
there are data that say that French -
Q. France
A. - are different.
Q. From France?
A. Yes.
Q. Right, on two loci?
A. That's correct.
```

Q. That Dr. Carmody provideo, $2 s$ that correct?
A. Yes, that's correct.
Q. All right, so apart rom that you have no evidence that they're different, do you?

There's other what I would call circumstantial evidence that they may be different in that there's a difference between the U. S. and Canada. There's also the ract that there's a lot of band sharing when you look at the New Brunswick population represented by this particular case.
Q.
A.
0.
A.
A.

And New Brunswick is represented in the sample tut not adequately represented, is that right? If New Brunswick differs genetically froo the other provinces for whatever reason, then having a very, very small number of individuals, 20 or 30 , is not a good sample of New Brunswick's gene frequencies. What, Doctor, if we made a comparison of the - in the United States you made a comparison between the FBI Caucasian data, the Florida Caucasian data, Texas data. Who else did you compare it to? Califormia ror some of the probes. And you were looking to determine whether or not there was any statigtical bin frequency difrerences? That's correct.

And if you found them, which you did, that's an Indication to you that there's substructuring goine on, is that right?

It's an indication that there are frequency differences between at least two of those populations, which implies geographical dirferentiation, since we're talking about geographical distances.

```
O.K., and what did it mean when you compared in
the United States, when you compared the EBI with
Florida, with Texas, and you round differences.
What did that mean to you, what did that tell you
as a scientist?
It tells me again that the theoretical idea that
there's possibly or l{kely to be substructure.
there's likely to be genetic differentiation within
human populations as a function or geography and
mating distance, if I could use those terms.
Q. And the same comparison between canada and the
United States when you compared the bin frequencies
there and found oifferences that also told you what,
Doctor?
A. Same thing, it gays that there's evidence that
there may be enough genetic differentiation that
you have to be -
Q. And you expected that because Canada is more
homogeneous than the United States is. Homogeneous
means there would be less likelihood of sub-
structuring going on in a homogeneous population,
am I right, so there would be a less likelihood of
substructuring going on in the Canadian population
as opposed to the United States population?
Yes.
And, Doctor, what if we did the same kinds of
tegts that you did in the United States and if
you compared Canada with the United States? What
If we did that with respect to the Caucasian data
bases in Canaoa, between Vancouver, Ottawa, and
CFB Kingston, and found no statistical bin
frequency differences? What would that tell you?
```

A.
Q. Meaning?
A.
Q.
A. For those three populations, yes.
Q. And if those three populations included - and if one of those populations happened to include representatives from the other provinces that would bave some meaning with respect to the other provinces, would it not?
Q. Why don't we envision CFB Kingston as kind of a miniature country, all right? It's like the FBI sample.
Q.
A.
Q.
A. That's correct.
Q. And if we did the same and compared it with a sample population from the capital city and found no statistical bin frequency differences you would have to conclude that there was no evidence of substructure, and in fact -

And if you took a population of French-speaking people from Quebec city and compared those to Ottawa and you found no statistically significant differences in allele frequencies. I would say that Canada doesn't have to worry as much as the U.S. But, Doctor, you're completely discounting the fact that CPB Kingston would have representatives from the Province of Quebec, represenatives from the Province of New Brunswick, representatives from Manitoba -

I'll try ana show you why it doesn't matter. If we take a big population, we take a population that is, as you're suggesting, homogeneous because it's primarily British, and it has 80% of the decks of cards or 90% of the decks of cards or just 80% are

```
actually regular decks of cards, and you throw in
20% pinochle decks and then compare that mixture to
all regular decks they're not going to be very
different, but if you were to take all pinochle
decks, French Canadians, and compare those to all
regular decks, English-speaking Canadians, there may
be a difference.
Q. May be?
A. So it's apples and oranges. Yes, I said maybe. l
do not know, I have not seen any explicit data that
gay one way or the other other than the data I just
saw the past two days that say that the French -
Q. In France?
A. In France.
Q. At two loci
A. At two out of five loci are different.
O. 0.K., and apart from that - are you aware, Doctor,
that Dr. Carmody did in ract do these tests between
CFE Kingston, Ottawa and Vancouver? Were you aware
of that.?
A. I was told that he has done those testa, yes. I have
not read his analyses of those tests.
Q. Were you aware also, Doctor, that Dr. Carmody did
tests with respect to - statistical tests with
respect to Hardy-Weinberg equiliorium and gtatigtical
linkage? Here you aware of that?
A. I was aware that he had rinished the Hardy-Weinberg
and that he was still working on the linkage
disequilibrium analyses.
Q. And in fact one of the tests that he used - you know
Seymour Geiserp
Yes.
```

| - 107 - Dr. Shields - Cross \quad (Voir Dire) | |
| :---: | :---: |
| Q. | And one of the tests that Dr. Carmody used was one |
| | Of the tests recommended by Dr. Geiser? |
| A. | O.K. |
| Q. | The non-parametric median test, were you aware of |
| | that? |
| A. | I was not aware of that, I have not read it, no, |
| | so now I am aware of that. |
| Q. | Were you aware that Seymour Geiser recommended that |
| | as perhaps one way of looking for Hardy-Weinberg |
| | equilitorium, testing for correlation? |
| A. | I was not aware or that but I'm not surprised. |
| Q. | O.K., and Dr. Carmody's findings were that there was |
| | no high correlation, Does that surprise you? |
| A. | No high correlation with what comparison? |
| 0. | With respect to the Hardy-Weinberg comparison. |
| | There was no high correlation with respect to |
| | non-random association - |
| A. | - or alleles at a single locus. |
| Q. | At a single locus. |
| A. | I'm not surprised. |
| Q. | And is that an indication to you, Doctor, that |
| | there's not significant substructuring going on in |
| | those sample populations? |
| A. | No, that's an error that a lot of people have made |
| | from the very beginning. Hardy-Weinberg is only |
| | one example of what could go out of - |
| Q . | But that is one example, Doctor. I'm not saying |
| | It's a complete test, it's one example, though, eh? |
| A. | Yes. |
| Q. | The same as the comparison Dr. Carmody made from the |
| | three Caucasian populations, that's another example |
| | of trying to determine whether or not there's |
| | substructuring going on, is it not, those statistical |

```
    tescs that he did?
A. Yes, and the tests he did between the two Indian
    data bases.
Q. And the tests he did at the individual locus, this
    non-parametric median test inat Seymour Geiser has
    recommended, that's another way of trying to find
    out if there's substructuring, and he's found none,
    you're aware of that? Right?
    No, you're telling me that. I will accept that.
    You didn't take that into consideration when you
    gave your opinions here this morning?
A. What?
Q. You weren't aware the doctor had done these tests,
    Dr. Carmody?
A. I told you that I was - you keep on changing the
    question.
Q. You weren't aware of the results?
A. Yes, exactly, I'm not aware or the details of the
    results. I know that he found - in fact, I knew in
    Bourguignon that he found no violation of Hardy-
    Weinberg equilibrium conditions, so I knew that a
    long time ago.
    O.K., did you know that he's also doing work with
    respect to the linkage equilibrium questions?
    He told we that he was working on it. I have not
    seen or heard results yet.
    Perhaps, Doctor, we could look - I'll just, so I
    won't misquote him - he states at Page 36 of his
    direct examination, Dr. Carmody, "The next thing one'
    wants to know about the data base pertains to the
    next step in this procedure of calculations, namely
    the product rule. Muitiplying the probabilities
```

```
that you obtain from each locus which you are now
confident are good reliable estimates because they
are fitting Hardy-Weinberg equilibrium you now wart
to be sure that there are no correlations between
what genotype occurs ror probe one and probe 2,
probe 2 and probe 3, and so on through all the
combinations." And the question was, "You want to
ensure the difference between each probe, there is
no non-random association from probe to probe".
And his answer, "That's right, in the same way that
one wanted to be sure there was no correlation
between the pattern of a band, the two bands at
each locus, one wants to be able to be sure that
there is no correlation or the band pattern at one
locus and the band pattern at another locus".
O.K., what do you - and he goes on to say: "To do
that test I usea a non-parametric test that is a
variant of what I used looking at each individual
locus. It is not a non-parametric median test - it
is a non-parametric median test that I used. It
has the ability to pick up strong correlations. It
again has a limitation and the limitations are even
greater in the case of comparing correlationg
between probes because the number of categories
that you expect is still higher than the number for
each individual probe itself", and he did not find -
he says, "I have been able to satisfy myself that
there are no strong correlations or the genotype
frequencies from one probe to another", and I
asked him, "If there was, what would you call that
term", and he gaid, "That would be called linkage
disequilibrium or gametic phase disequilibrium", and
the question was, "And if in fact there is no
```

```
-110 - Dr. Shields - Cross
                                    (Voir Dire)
```

```
association, random association, I take it would be
linkage equilibrium". "Yes". So now you know that
he's done some work on that particular question.
Fight.
Q. And that's an indication as well, Doctor, that there's
no one indication, one exampie, that perhaps there
is no signiricant substructuring going on in the
Caucasian population, is that correct, in the
Canadian Caucasian population?
That's an inoication that there may not be, but now
I would point out that I have a suspicion thar were
you to ask Dr. Carmody, and certainly if you asked
me, if you ran the same teat using D17S79 and
another locus between the U.S. and Canada you'd
discover that there is Iinkage disequilibrium, or
ag we say, gametic phase disequilibrium.
A. Because there are signiricant allele rrequency
differences between loci.
Q. If we could get to that for a moment, Doctor, in
this - and perhaps before I leave that, and I know
Your Lordship will be wanting a break very shortly
but I'd like to deal with one issue before we leave
that and this is this - what was that correction
factor, you called it Nichols and Balding correction
factor? Now, the purpose or that correction ractor,
Doctor, was to correct for substructure caused by
inbreeding, sub-populations, and things of that
nature?
What's what they're trying to do. That's correct.
And in VD-121 you made some calculations with
respect to that particular question, so what you're
```

Q. I see.

```
trying to do there, Doctor, now correct me if I'm
wrong, you're obviously quite aware or the ract
I'm not a population geneticigt, so correct me if
I'm wrong - what you're trying to do there is show
His Lordship that if there is inbreeding going on in
the Province or New Brunswick, particularly in the
area which Mr. Legere comes from, that using Nichols
and Balding's correction factor those are the
rrequencies that you vould correct for?
A. So you'd end up with one in 5.9 million or one in
226,000, depending upon whether you were talking
about a 5-locus or a 4-locus match.
Q. And that is on the assumption that there is
inbreeding in the particular area where the crime
was committed?
That's correct.
And that's the reason you've done it?
That's correct.
And part of this background band sharing test that
you did was an indication or another way of supporting
that in the sense or showing his Lordship tnat there
is some form of inbreeding in the Hider sense going
on in that particular area. am I right?
That's correct.
And assuming for a moment, Doctor, that you hao
applied Nichols and Balding's correction factor and
the figures that you obtained were similar to the
rigures that the R.C.M.P. obtalned in this particular
case, and just so we understand each other, assuming
ror a moment, Doctor, that you had applied Nichols
and Balolng and when you compared Nichols and
Balding's frequencies at the locus were similar co
```

```
    the R.C.M.P. frequencies, what would that indicate
    to you?
A. Given the way that Nichols and Balding's correction
    ractor works, that's impossible, because what goes
    Into the formula is the R.C.M.P. rrequency, and
    then that is corrected.
    Yes, it's corrected based on what, Doctor?
A. Using - Nichols and Balding suggest using the highest
    What we call FgT, which is a fixation index. It's
    the nighest level of empirically observed inbreeding
    you see In human populations. It also corrects for
    the possibility of what they call non-random
    mutation of these VNTR probes. Getween the two of
    them what it does is it says - it's in essence a
    measure of the background correlation of bands.
Q. O.K., it has something to do with the band sharing
    that you've actually got?
    Exactly.
Q. This is a way of showing chat if you apply Nichols
    and Balding's correction ractor on the backiground
    band sharing this is what you're going to end up
    with, is that right?
    No, no, no, this is applying Nichols and Balding's
    correction ractor on the R.C.M.P. frequencles.
    But, Doctor, what you have to do when you do that,
    you need a value ror the correlation, you need a
    value for that F letter.
    Yes, the F statistic, and they suggest . 05.
    .05, and I take it you need that to cerry out your
    calculations, do you not?
    Absolutely.
Q. You take Legere's alleles that the R.C.M.P. have
```

 generated, the frequency at the locus ~
 A. Again what I would do is take the evidence alleles,
but it's in essence you can take either Legere's or
the evidence.
Q. What did you do there, Doctor?
A. If I remember correctly, I probably used Legere's
because that's what the R.C.M.P. did.
Q. O.K., and what you did is when you got those, then
you applied the f value, the value of the correlation.
you uged what was recommended oy Nichols and galding?
A. That's correct.
Q. And you applied that and you got those particular
numbers which are exceedingly higher than the other
frequencies, am I right?
That's correct.
What if, Doctor, you took a lower coefficient of
inbreeding?
A. The numbers would get smaller.
Q. And that's where we're going to go, Doctor.
A. We are?
Q. With respect to this particular - whet you're
referring to was Nichols and Balding, you're referitig
to "Effects of population structure on DNA ringerprint
analysis in forensic seiencen, are you not?
A. That's correct.
Q. And that's an article that was put into the "Heredity
(1991), The Genetical Society of Great Eritain", by
Richard A. Nichols and David J. Balding, this is the
article that you're referring to to do those
calculations, am I right?
A. Yes, it is.
0. And at Page 300 of that, and this is where you got

```
- 114 - Dr. Snielas - Cross
                                    Voir Dire)
```



```
- 115 - Dr. Shields - Cross
```

approximate . 05% coefficient of inbreeding?

```That's actually the largest values found in a
    general population. It's much higher in the British
    Royal family, for example but -
    O.K., but in Europe generally were an order of
    magnitude smaller, .005; right?
    That's correct.
    "and more recent surveys show dramatic reductions
        associated with increased mobility due to modern
        transport. More typically, values are another
        order of magnitude smaller." So in populations that
        would mean that typically they're saying that you
        would expect . 0005 , another magnitude order smaller;
        right?
        Yes.
Q. "Hence the value 5 per cent appears to be very
    conservative for any large population and smaller
```

~ 1l6 - Dr. Shields - Cross
(Voir Dire)

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
inbreeding is known not to occur." Would you please, \\
Doctor - no, I'm asking the questions - would you
\end{tabular}}} \\
\hline & \\
\hline & please calculate for me using . 0005 those figures? \\
\hline A. & I can't. \\
\hline \(Q\). & Can you do that? \\
\hline A. & It's on my computer and I can't do it. \\
\hline Q. & Oh, you've already generated them? \\
\hline A & You've had somebody do it for you and I'll buy it. \\
\hline \multirow[t]{3}{*}{Q.} & Yes, you've already generated them, Doctor, haven't \\
\hline & you? Is that what you're saying, you already have \\
\hline & those on the computer, those numbers? \\
\hline A. & These I did on a computer. \\
\hline Q. & But did you use . 0005 in your computer? \\
\hline \multirow[t]{3}{*}{A.} & No. If you continue reading in that paper you'll \\
\hline & see why they suggest using . 05 and why I choose to \\
\hline & use . 05. \\
\hline \multirow[t]{3}{*}{Q} & Here, you read the paper and tell the judge why you \\
\hline & choose to use the most extreme example of inbreeding \\
\hline & every seen in the world to apply to the New Brunswick. \\
\hline \multirow[t]{12}{*}{A.} & O.K., "In the previous two sections we have discussed \\
\hline & calculations of match probabilities under hypothesis \\
\hline & Il, ignoring measurement error, and conservative \\
\hline & estimates of the parameter fist. We now turn to \\
\hline & calculating match probabilities under Il. accounting \\
\hline & for the measurement error specified by \(M\) at (3). \\
\hline & Hence we need to consider not only the case that two \\
\hline & alleles are the same, but also the case that their \\
\hline & lengths are similar. Balazs et al round substanitalay \\
\hline & different distributions of ellele lengths in three \\
\hline & U.S. ethoic groups. Their histograms show that the \\
\hline & allele lengths have a smoothness property; cells of \\
\hline
\end{tabular}
```

 -117-Dr.Shields - Cross
 (Voir Dire)
 each histogram tend to have a similar frequency to
nelghbouring cells. The size and scale of this
effect are summarized in Figure 1, which plots the
sample correlation (with respect to the total sample
mean) of frequencies of cella separated by given
distances. Some apparent smoothing can be
attributed to measurement error, as alleles of
gimilar lengths will be confuged. However, Figure l
Indicates large positive correlations over distances
much greater than the range of measurement error.
This smoothing may be a result of the mutation
process, which appears to generate new alleles of
lengths similar to the progenitor allele", and
they cite Jerfreys et al, 1990.
"Hence, given a criminal allele, population
structure efrects lead not only to a higher
probability of observing the same allele in the
suspect sample but also the chance or observing
alleles of similar length is enhanced compared
with that due to random selection in Q." Q is the
population or interest. "However, the correlation
of similar-length alleles will be smaller than FST
Ir, as we believe, it is due to the interaction or
inbreeding (of magnitude FST) and other processes
(principally mutation) which propagate, but attenuate,
the effect to alleles of adjacent lengths. This
belier ls supported by the data of Balazg et al
(Fig. 1).
"Therefore, the probability of match for a
single band is conaervatively estimated by (5) on
replacing the allele rrequency p with the cell
frequency }\mp@subsup{P}{f}{}\mathrm{ or }\mp@subsup{P}{m}{}\mathrm{ and choosing an overestimate of

```
FST, Finally, approximating onee again theappropriate genotype rrequency as the product of thetwo cell frequencies, the single-locus value \(\mathrm{R}_{1}\)is given by...".They then note that they recommend the .05 totake care of both inbreeding and allele sizesimilarities.
Allele size similarities in what regard, Doctor?
What I just read, \(I\) can explain in just general
words, is if you look at variable number of tandem
repeats, alleles come with particular numbers of
those repeats and that's what determines their
length, their fragment length. Turns out that if
you look at the distribution of all alleleg at a
particular locus with a particular probe there are
actually correlations. If there's a high rrequency
allele with a particular number there are also nigh
frequency alleles next to it in the bin, and then
if there are low frequency alleles there's low
reequency alleles next to it within and without the
bin, so that there's actually a higher number of
fragments with similar base pair numbers than you'd
expect if the number of fragments was randomiy
distributed of all possible combinations. Because
or that you get not just identical alleles oceurring
more frequently than you'd expect by chance, but
also alleles that can't be measured as different
occurring more frequently than you'd expect by
chance.
And that applies to all the systems, all these RFLp
systems, is that what you're saying?
Yes, it does, yes. that's what they say.
Q. I see, and that's why you'd use the highest coefricient of inbreeding ever found in the world?
A. It's not just a coefflcient of inbreeding, it's a rixation index.
Q. But I mean that's when he refers to the . 05 , that's what he's been referring to, the correlations of \(5 \%\), and that's pretty conservative, is it not, Doctor?
A. Yes, it is.
Q. Doctor, perhaps we'll go on to the issue - I just quickiy want to finish up berore the break on this aspect and we'll go on to that other issue, but just bumour me for a moment and let's deal with this. I'm curious, you've used this \(5 \%\) coefficient or inbreeding, or it's \(5 \%\), it's the highest in the world. They talk about magnitudes lower all the way down to . 005 -

Again I'm going to disagree. They recommend and they use -05. I didn't choose to use it, they did.
O.K., but assume for a moment, then, Doctor, we don't use what they recommend, we use .0005 . I'm here to testify about what other seientists are saying about this process. They recommend using .05. I might actually recommend doing something very different.
Q. Perhaps I'li show you, Doctor, if we did use just .0005 which apparentiy is the more typically values are another order or magnitude smaller. Apparently rroothis typically you would expect . 0005 . right, the coefficient of inbreeding according to this paper, "typically values are another order of magnitude smaller. Hence the value of 5 per cent appears to be very conservative for any large
```

population and smaller values would be appropriate
in cases where extreme inbreeding is known not to
occur."
A. If all you're trying to do -
Q. What do they mean when they say, "and smaller values
would be appropriate in cases where extreme
inbreeding is not known to occur"?
Where it's known not to occur, which is not the game
thing that you fust said.
O.k., so you're suggesting - you're assuming what?
What level of inbreeding are you agguming in the
Province of New Brunswick?
All I can do is state that rrom the data from this
case there's a level of background band sharing
that suggests that there's some level of background
inbreeding. I could actually aalculate what it is,
but not instantaneously.
And do you have any feel for how much it would be,
Doctor?
Not . OS, if that's what you're getting at.
It wouldn't certainly be .05 -
It would not be . 05.
It wouldn't be . OOS either, would it?
Oh, yes, it would.
Do you think so, Doctor?
Oh, yes, when you share this many bands.
O.K., well, perhaps,then, Doctor, if you think it
was about .005, around there would be probably a
reasonable -
Reasonable whar?
A reasonable estimate or the coefficient of
inoreeding in the Province of New Brunswick?

```
A. Inbreeding by itself, go ahead.
Q. All right, look at these numbers here, Doctor, and
tell me whether they look something - if we calculated using. 005 , and how do they compare to the band frequencies. Tell His Lordship how they compare to Legere's frequencies as determined by the R.C.M.P.
They're different, they're smaller, but not as small
as the ones that - with the . 05.
Q. All right, would you please tell Hig Lordship what
those numbers show?
A. Sure, if you use . 005 instead of -
Q. Which is what you believe is the approximation of what you think is the coefricient of inbreeding? No, I said that's a reasonable.
Q. O.K., well, reasonable then, all right.
A. We'll use it.
O. Let'suse it.
A. O.K., instead of one in 79 for the DIS 7 it becomes one \(\operatorname{in} 70\).
Q. And what did you calculate this morning, Doctor?
A. With . 05 it's one in 32.
Q. Continue, and \(I\) would like you to do -
A. There are check marks next to mine, do I have to
keep on doing mine?
Just go ahead, Doctor.
My math was correct for once. Anyway, D2S44, one
in 59 was the R.C.M.P., one in 27 was the N. \& B.
with .05 , one in 53 is the N. \& B. with . 005 .
0.

Quite a diference, en?
A. Absolutely.
Q. Continue, Doctor, please.
0.K., would you stipulate to it? D4S139, one in 69. One in 61 at . 005 versus one in \(28, ~ N . \& B\).

MR. FURLOTTE: My Lord, if I might object, I wonder if that's Dr. Shields' testimony or some other expert witness that the crown hired.

MR. WALSH: Well, you don't want to accept those figures, Doctor, they don't look -
A. I didn't say that, I said they looked fine to me. I trust the arithmetic.
Q. O.K., fine, continue, please.
B. Do you want just the bottom line or do you really want me to do each of them?
Q. No, I'd like to know what the R.C.M.P. one is, I' like to know what you calculated this morning and what's shown there when you uge a dirferent coefficient of inbreeding.
A. Sure. By the way, we could use .l and then you'd be very unhappy, but anyway, Dlos 28 , one in 108 is the R.C.M.P., one in 95,. 005 , and one in 38, N_\& B., O.K., usimg their recommended .05. Dl7S79, one in nine for the R.C.M.P., one in seven for \(N . \& B .\), and one in eight, right in the middle, for \(N . \& B\). with . 005, and then as noted we have for a 4 -locus match, we came up with one in 226,000 for N. \& B., one in 5.2 million for the R.C.M.P. without any correction - oh, no, you only have the blg one, I'm sorry, so I'll have to do that, 5 -locus match. Five-locus match was one in 310 million, R.C.M.P., one in 5.9 miliion for N. \& B. with. 05 , and you have one in 271 million for 005.
Q. Thank you, Doctor.
```

THE COURT: You read very well, Dr. Shields, that's the
point you wanted me to make, Mr. Furlotte.
MR_ WALSH: I wanted to - just so we clarify that aspect of
it, Doctor, what we were dealing with here is the
number that you got out this morning depended on the
actual coefficlent of inbreeding that you applied
to that pariicular case, am I right?
Of course.
Q. Ano when you apply a lower coefricient of inoreeding
the numbers become very similar to what the R.C.M.P.
have generated, do they not?
A. Yes, you can make them even smaller. Actually,
you'd never get it smaller.
Q. You sald .005 was reasonable, did you not?
A. No, I sald it's a reasonable approximation of the
degree of inbreeding that might be occurring in
New Brunswick.
Q. Fine.
A. It does not correct for the other things that
Nichols and Balding's technique corrects ror, and
Nichols and Balding suggested .05, period. They
recognize what you're talking about but they sald
it and they still say . 05.
Q. But tell me what they mean, then, Doctor, when they
gay, "and smaller values would be appropriate" - here,
it says, "Hence the value 5 per cent appears to be
very conservative for any large population and
smalier values would be appropriate in cases.."
A. That's exactly what they mean. If you're talking
about inbreeding by jtself, that's fine, smaller
values are appropriate. They then continue the
paper, you have to read the whole paper -

```
Q. Oh, yes, you went on to that, but I just wanted to get into the aspect of this particuiar coerficient of inbreeding that you're dealing with there.
A. No, that coefficient is to correct for both factors, according to Nichols and Balding.
Q. I see, but you didn't tell His Lordship this morning the differences with respect to what happens when you do put in a lower coefficient of inbreeding, right?
A. I used Nichols and Balding's suggestion.
Q. But you didn't explain this morning to Hig Lordship what would happen if you put in a lower coefficient of inbreeding?
A. Nobody asked me the question.
Q. Do you know what the general coefricient of inbreeding is in the Canadian Caucasian population, Doctor?
A. Absolutely not.
Q. Why? Why wouldn't that be of interest to you? Was that something else that you wouldn't take into consideration?
A. I've no idea. I would wonder if anybody does.
Q. Ali right. Do you know Dr. Lorne Xirby?
A. Yes.
Q. In ract, you've referenced in court cases his textbook.
A. Yes.
Q. "DNA Fingerprinting: An Introduction"?
A. Yes.
Q. Right?
A. Yes.

```

- 126 - Dr. Shields - Cross
(Voir Dire)

```
A. I'm sorry, but the way you readit you lost me, or I got lost.
Q. All right, perhaps ill let you readit. Pages 128 to 129, it's right under the chart that you keep referring to in the other court cases.

THE COURT: just hoid on a minute and give the witness a chance to read -

MR. WALSH: I was just pointing out, My Lord, where it was.
A. Yes, that's lower than that, but I'm not sure where he's getting his data from.
Q. Well, you didn't have any problea, Doctor, referring to the chart out of that textbook to make your pointg in other cases. Why are you having problemg referring to a rew paragraphs underneath the chart?
A. Because the chart is raw data.
Q. I see. I see, so you don't consider -
A. He then goes on to state that there are isolated groups with . 02 and -03.
Q. Yes, but not Canadian Caucasian populations.
A. No, of course not, but the difference between these two will result in an \(\mathrm{F}_{\text {SI }}\) that is considerably higher than .00004 or .0007 , and I suspect that the allele frequency dirferences between the two Canadian Indian data bases result in wuch higher \(F_{S T}{ }^{\prime}\)
Q. No, no, I didn't ask you anything about that, Dootor. All I wanted to know about the non-isolated canadian Caucasian population.
A. But, see, I'm suggesting that there is no data about the UNTR's to answer that question.
Q. Well, where do you think Lorne Kirby got these
figures, out of the air?
A. I don't know, he doesn't give a citation.
Q. I gee, you don't consider Dr. Kirby to be an authority, then, his textbook to be an authority in this particular field? Or course I think it's an authority, but he doesn't give a citation.
Q. You use his book, though, to site particularly the chart out of that book, did you not? Data.
Q. Data, yes, but you consider Dr. Kirby's book to be an authority?
A. To be an authority?
Q. Yes.
A. Yes.
Q. And you also testified this afternoon that you'd be surprised if anyone knew what the coefficient of inbreeding was in the Canadian Caucasian population? I still would be.
Q. You don't think this provides some answer to you?
A. For vnta's?
Q. This book is on forensic DNA fingerprinting, that's what we're dealing with.

Yes, but \(I\) think if we read it again it doesn't even make it explicit whether he's talking about VNTR's.

I don't think there's enough data yet.
Let me ask you just a simple question and then I'll
ask His Lordship for a break. DNA fingerprinting, what particular types of alleles are we looking at? What types of alleles?

Yes, what -
Lots of different kinds.
And we're looking at VNTR's, are we not?
A. Not always.
Q. With DNA typing we're not looking at VNTR's?
A. Not always.
Q. In thig particular article -
A. Sometimes we're looking at what are called - they're multiple loci rather than single loci. so they're not variable number of tandem repeats, they're repeated throughout the geno, not single locus.
Q. But these highly polymorphic ones -
A. They're still highly polymorphic.
Q. But what we're dealing with here are VNTR's, though, Doctor, are we?
A.

Not always. Let me just give you an example. They use a single locus probe, do you remember that one, it's the same in everybody? Guess what the inbreeding coerficient is on that one.
Q. No, I'm talking about - all I wanted to know, Doctor, is whether or not we are looking in this particular forensic application or RFLP typing whether we're looking at VNTR's, variable number of tandem repeats.
A. That isn't what you asked me, yau asked me about the book.
Q. Are we dealing with variable number or tandem
repeats when we're dealing with RFLP typing?
I can't tell from his quote.
Q. Perhaps I'll let you read it at the break, if you wish. It's up to you. If we could have a break, My Lord?

THE COURT: Perhaps, Mr. Walsh, if you're not going to use some of these exhibits any more they could be got back to the Clerk so that they don't get mixed up.
```

All right, we'll have a break.
(BRIEF RECESS - RESUMED AT 3:50 p-m.)
(ACCUSED IN DOCK.)
(CROSS-EXAMINATION OF DR. SHIELDS CONTINUES.)
MR. HRLSH: Dr. Shielos, I caught my wind, so to speak, at
break in terms of this -
THE COURT: Not too much, I hope.
MR. WALSH: No, My Lord, I'll be careful.
THE COURT: They get second uind, you know, Doctor.
MR. WALSH: just on certain points, My Lord. The article
that we referred to, the Nichols and Balding, the
correction ractor, and we've gone on quite
extensively with respect to the coefricient of
Inbreeding and the ract that they've recommended
that you use the most extreme ever seen, .05, and
you feel based on this background band sharing that
you've done that you would - what would be reasonable
to you would probably be .005.
A. I'd have to do the real calculations. I think that's
a reasonable number to try and see what happens.
Q. O.K., and you said the other aspect that they were
looking at, and you kind of overwhelmed me a bit
when you were giving we the answer, but it was
something with respect to - I understand, Doctor,
the other aspect that they were trying to correct
for is the problems with raspect to the fact that
these are continuous allelic distributions as
opposed co discrete allele systems?
A. It's actually because it's not quite continuous that
they're trying to correct. It's because there's a -
you'd probably call it a contagion of sizs, that if

```

Q.
A. O.K.
Q. Then you would agree, Doctor, that it would correct?
A. It would correct some but not entirely. as they point out in the paper and state very explicitiy, it is not just within the sare bin, it's also rurther distant. That correlation that they observe in Balazs et ai's data that they demonstrate in that
\begin{tabular}{|c|c|}
\hline & graph goes beyond bin boundaries when you're looking at, for example, the \(F B I\) bins, so it would partially \\
\hline & correct for it but not entirely. \\
\hline Q. & O.K., so assuming that it partially corrects for it, \\
\hline & then, Doctor, we could actually use a lower \\
\hline & coefficient of intreeding to do our calculations. \\
\hline & could we not? \\
\hline A & Yes, we could. We could, or we could turn it around \\
\hline & and say let's do en actual match window frequency \\
\hline & and count the number of alleles in a data base that \\
\hline & are plus or minus 5. \(2 \%\) rrom a particular allele in \\
\hline & question and use that rrequency and use the . 05 \\
\hline & correction factor. Either or those would be - . 005 , \\
\hline & you keep on wanting to use that, but let me just \\
\hline & tell you why I'm hesitant, and I don't think - I'm \\
\hline & not trying to naysay you. It has to do with the \\
\hline & ract that there's surficient band sharing from \\
\hline & looking at all of the data that I don't think. 005 \\
\hline & is right any more than I think. 05 represents the \\
\hline & true inbreading coefficient. I think it's eoing to \\
\hline & be somewhere in between if we were to just think \\
\hline & about the true inbreading coefficient. \\
\hline Q. & Do you mean, Doctor, if you're just talking about \\
\hline & true coefficient of inbreeding that you would - \\
\hline A. & I should - let's be more precise because I'm not \\
\hline & talking simply about any inbreeding coefficient. \\
\hline & What I'm talking about is FST, which is the \\
\hline & correlation between gametes within a sub-population \\
\hline & relative to the correlation between gametes across \\
\hline & sub-populations. \\
\hline Q. & O.K., but what you're suggesting is probably \\
\hline & somewhere between. 005 and .05? \\
\hline A. & Yes. \\
\hline
\end{tabular}
```

- 133 - Dr. Shlelds - Cross
(Voir Dire)

```
Q. O.K.
A. Given the amount of band sharing that we see.
Q. So what you're suggegting, Doctor, is that in what
    you've seen in the area in which you've looked at
    the samples from the area in which those samples
    come you believe that the coefficient of inbreeding
    is higher than has been ever seen in Europe?
    No, you didn't listen, I guess. I said between
    .005 and .05. That's less than 05.
    .05 is the most extreme case ever seen, am right?
A. Yes
Q. .005 is the largest values found in Europe?
A. Not really, if you look at the Ashkenazy Jews it's
    higher for them. There's a lot of groups in Europe
    that are higher than . 005. It's explicitly higher
    than those found in European well-mixed populations
    in cities.
Q. Oh, I'm just reading what Nichols - you've relied
    on Nichols and Balding, Doctor, and Nichols and
    Balding have said that, "Cavalli-Srorza and Bodmer
    surveyed the literature in which these techniques
    have been used. The most extreme cases were
    correlations of 5 per cent", and you've told us that
    means . 05 ?
A. 05.
Q. "These correspond to severe intreeding, such as that
associated with a tradition of uncle-niece marriages.
The largest values found in Europe were an order of
magnitude smaller", and I understood from you that
that would be .005 .
A.
It also could be . 009, it could also be anything
. 00 , so I mean 1 t will vary around .005.
```

 - 134 - Dr. Shields - Cross
 (Voir Dire)
 Q. "And more recent surveys show dramatic reductions
associated with increased mobllity due to modern
transport. More typically, values are another
order of magnitude gmaller", and I had understood
from before the break that that would take us right
down to.0005?
A. Right.
Q. nHence the value 5 per cent appears to be very
conservative for any large population and smaller
values would be appropriate in cases where extreme
inbreeding is known not to occur." Now, simply,
Doctor, I was trying to determine - you're suggesting
that perhaps if we use a coerficient higher than
.005 but lower than .05, so you're actually suggestin
that we use a coefficient higher than ever seen in
Europe but lower than ever seen in the world, is that
right?
Yes.
Because you believe that the sample population from
which these individuals come, that you've looked at -
The numbers tell us that.
O.K., Dased on the numbers, this background band
sharing that you applied, that tells you that the
coefficient of inbreeding is as high or higher than
has ever been seen in Europe? You're nodding your
head, for the record, yes?
That's correct.
O.K., thank you, Doctor, we'll move on. Now, with
respect to inbreeding, this aspect, my understanding
from the testimony over the last weeks or so is that
one of the indicators of inbreeding is excess
homozygosity, would that be an indicator of inbreeding

```
A. Right.
\(Q\).
```

Q. Because he's only one person?
Q. Doctor, isn't it a ract -
A. I do know that it's been reported, for example, that Dr. Carmody has examined the big data base and found no evidence for excess homozygosity, but I also know that the R.C.M.P. in one of their papers reports an excess of homozygosity all of the loci. But we won't get into that argument. That's part of the Deviin \& Risch aspect, is it not, Doctor, that paper that Deviln \& Risch put out with respect to No, no, I'm talking about the R.C.M.P., I'm talking about Waye.
The presence of excess homozygosity can mean
increased intreeding. It can also mean selection
for the particular allele in question. The absence
of an exeess of homozygosity can mean an absence
of inbreeding and it can also mean selection, so
there are multiple factors that cause chain
frequency differences, so you can't say -
But one indicator, one small indicator of absence
of inbreeding, would be an absence or excess
homozygosity?
That's correct.
O.K. Humour me again, Doctor, but when you looked
at Mr. Legere's alleles did you see any homozygosity
or any excess of homozygosity?
You can't really test a single individual for that.
I mean, there were homozygotes in that data but I
don't know whether there are as many as you'd expect
or not expect.
Because he's only one person?
Doctor, isn't it a ract -
I do know that it's been reported, for example, that
Dr. Carmody has examined the big data base and found
no evidence ror excess homozygosity, but I also know
that the R.C.M.P. in one of their papers reports an
excess of homozygosity all or the loci.
Q. But we won't get Into that argument. That's part of
the Deviin \& Risch aspect, is it not, Doctor, that
paper that Deviln \& Risch put out with respect to -
about Waye.
No, I appreciate that, Dut what I'm saying, Doctor,

```
```

- 136 - Dr. Shields - Cross
(voir Dire)

```


You're missing what I did. All I did was take the R.C.M.P.'s frequencies, use their logic, and generate probabilities that you'd get rour bands to match.

But you have actually taken, though, Doctor, five individuals from that particular area, and based on those five individuala you've extrapolated a theory, and the theory is this high coeificient or inbreeding am I right?

The probability that results when you ask what's the likelihood that you'd get this by chance in a small population, in a sample size of the gize that we're looking at, is one in trililions. That gays that it's probably an incorrect assumption to assume that the R.C.M.P. frequencies are truly representativ or the population from which the five individuals are drawn. Let me finish because I'll explain to you what the problem is. If you have a very, very large sampla you can get statistical differences quite easily. When you have a very, very small sample, and that shows the kind of pattern we're talking about, all of the individuals share bends, that's less likely. Only if you were to nave that small sample thousands and thousands and thousands of times, and it only showed up once with a lot of band sharing, would you be correct in assuming that because it was a gmall sample you got a gtatistical giltch. The fact that it happens with a small sample, and it's true of allfive individuals, is to me good evidence ror band sharing, not bad.

Well, let me approach it from a different fashion. Doctor, if you tested an individual across multiple

A.
Q.
A.
wot:ld indicate to you?
That is statistically as unlikely as the reverse. That person would not be a good representative of that - or that data base would not represent that person very well either because it should, if it is a representative data base, be random whether that individual is carrying rare or common alleles. If they're carrying all common alleleg that makes them different, from a different population, and if they're carrying all rare alleles, that makes them from a different population.

The common alleles, though, Doctor, if my alleles were common and I compared them to a data base and I reflect common alleles in this data base, would it not also indicate, Doctor, that the person that you've tested is a profile of your Caucasian population, is a profile of the people in that particular population?

No, let me just show you what I'm getting at. Let's say there's 28 bins, 0.K.? Let's say that the high frequency bin is . 292, which it is for DL7S79. . 292. 0.K.? That means that \(30 \%\) of the people will be carrying that particular allele. If an individual has that allele and has the high frequency alleles from all of the bins, all the way through, that person is as rare an event, if you will, because you can multiply it through and find out how rare, as an individual carrying only low requency alleles. In one case what \(I\) would say is that the data base is biased for such a defendant, that they may be from a sub-population with allele frequencies that are lower, and in the other case it's biased against the defendant, if they have all rare.
\[
\begin{aligned}
-140-\text { Dr. Shields }- & \text { Cross } \\
& \text { (Voir Dire) }
\end{aligned}
\]
Q.
A. I might reach that as a tentative hypothesis.
Q. And that any gene requencies or allele bin frequencies that are being generated or profiles that are generated would be over-compensating? It would be a very conservative number in relation to what a true frequency is? It could be. It would depend. But in any case, I mean, to get back to the issue at hand, the question isn't here whether you have one, and that's the key to it, here you have five different individuals that share bands. It's not that they are either rare or common with respect to the data base, it's that they are common with respect to each other, and it's not all of the same loci. If it was only common loci, then maybe, sure. So this Nichols and Balding factor won't correct for that - it will correct for that problem, won't it? Nichols and Balding, the correcition factor will correct for this coefficient of inbreeding that you say is evidenced by this background band sharing?
A. I have a suspicion that if we were to do the probabilities the exact way, it would be different from the way I presented it earlier but I can do it very quickly, that they'd be very, very, very similar, so let me just do that and find out.
Q. Similar to what? No, hold it.
A. The Nichols and Balding probabilities would be very similar to the background band sharing probabilities by themselves.
A. No, . 05 .
Q. No, no, but you want to keep using . 05 and \(I\) want to use . OO5. You've already used . OS. Haven't you?
A.

Q: O.K., and if we use . 005 , what you said earlier today would be reasonable, a reasonable flgure in relation to what you saw with background band sharing -

I also stated that \(I\) would rather do the analysis to find out how close or far from that it is, but I mean \(I\) said, \(I\) admitted \(i t, I\) said that's \(a\) reasonable number, but \(I\) don't think it's an exact number. If you let me do this calculation I can tell you. Go ahead, Doctor, we'll do the calculation. The background band sharing is 3.3 out of 22 , which is . 275, Y to the 10 th power. One in 404,271. If you're looking at aingle locus, homozygous potential matches, so for five loci it would be one in 404,271, using the simple 3.3 band share per individual in this population. That's a lot closer to the one in 2l2,000 or whatever it was exactly, I don't remember, than it is to the one in 5.2 million.
    Let me ask you about that again. Let's use your
    .05 that you used. Doctor, I'm not quite sure of
    the exhibit number there -
THE COURT: 137 or \(121 ?\)
```

 - 142 - Dr. Shieids - Cross
 (Vodr Dire)
 MR. WALSH: I think it's probably l2l, My Lord.
THE COURT: The comparison of match probabilities?
MR. WALSH: Yes.
THE COURT: That's 12l.
MR. WALSH: Even doing that, Doctor, using .05, the highest
Inbreeding coefficient ever seen ln the horld, what
1s across a 5-10cus match?
A. One in 5.9 million.
Q. Do you think one in 5.9 million tells you anything
about the rarity of the alleles?
A. No, it tells you did it across five loci but that's
another story.
Q. Do you consider that to be a low number, one in 5.9
million?
A. Yes, it's a small number.
Q. And if someone was to suggest to you, Doctor, that
the probability of finding a match between two
sources of a forensic specimen was one in 5.9
million, what would that gay to you?
A. What would that say to me?
Q. Yes, what would be the qualitative statement you
could associate with that?
A. Maybe you could ask it as a question, I'⿴囗⿰丿㇄\mp@code{mot sure.}
Q. Well, I'm kind of a simplistic-type person. One in
5.9 miliion, would you consider that to be common,
rare? Would you consider that to be almost proof
of the same source, that the two forensic samples
came from the same source?
A. No, I would consider it rare, exceedingly rare.
Q. And so even using this . O5 correction or eorrelation
factor, the F factor, F statistic, even using that
you Hould arrive at a rigure in relation to Mr. Legere

```

A. Yes.
Q. And at this point in time you haven't been told
anything of that particular nature, have you?
No, I have not.
Thank you. Doctor, I won't play a game of guess where this came rrom, I'll tell you where it came from. It came from the Streich case. That's a case in Vermont that you were involved in?

That's correct.
O.K., and the judge in there at page 27 attributes a statement to you that, "The FBI's binning procedures gererally favour the defendant because the FBI's calculations are based on bin frequencies Which are higher than the actual allele frequencies, thereby increasing the probability of a coincidental match". Ig that a correct interpretation of the statement you made?

That'g correct.
And since the \(F B I\) and the R.C.M.P. have the same binning procedure, or esgentially the same binning procedure, you would also - that statement would apply to the R.C.M.P.'s binning method? I would have to therefore put all of the statements that went around that berore \(I\) would be willing to have it on the record here, and the statements are very simple. They are conservative relative to other possible ways of developing these probabilities but they are less conservative than in other, O.K., so What \(I\) was doing was talking about the relative conservatism.
Q. O.K., apart rrom the relative conservatism, you have not said in there that it underestimates the rrequencies? You don't believe the fixed bin method

boundaries.
Q. O.K., and did you see any allele bunching up at bin boundaries in this particular case?
Q. But you haven't done it in this particular case?
A. No, I have not. I don't have the raw data.
Q. Assuming for a moment, Doctor, that we can discount the possibility of bunching of alleles at the bin boundaries of having an effect on underestimating the true frequency, then the only other concern, Doctor, would be substructuring and the erfect substructuring would have on the true frequencies and how much binning would compensate for that; am I correct? That's correct. But you agree that binning is an attempt to compensate somewhat for substructure? I have read over and over again that that's part or the rationale for doing it. I think in my own personal opinion that the bins are a little smaller than would be necessary to do that because of the size of the match windows. But you would agree that it is an attempt to do that, that is what they're trying to do? Yes, absolutely.

```

that the final thing that I would like to see is
moderate size samples of appropriate etnnic groups
to indicate the degree of substructure directly
rather than through the intermediates of the
statistics, but all of those things - if you did all
of those things, yes, I would agree that that
methodology would be scientifically acceptable and
reliable.
Q. In easence, satisfied ourselves with respect to the
existence of substructure and its extent and its
efrect on frequencies?
Q. And if we could satisry ourselves on that you would
agree, with the caveats, but if we could satisfy
ourselves with respect to the issues of substructuring
if ror example His Lordship was to be satisfied that
substructuring has been explained to him and the
efrect has been explained to him to a sufficient
degree that he is confident that it doesn't
underestimate the true frequencies, you would then
agree, Doctor, that the application of the fixed
bin method, the Hardy-Heinberg equation, and the
product rule would be a valid method of calculation
for forensic purposes?
I apologize to His Lordship but you asked me a
different question. I understand he's got to make
the legal decision but we make the scientific
decision, and I would be satisfied if all of those
things were demonstrated to see 1t useo, but I don't
know whether I would be satisried with the
explanations that you jusc pointed out, so -
On, no, no, assuming that the explanations satisfied

```
A.
0.
```

 you, that's what I want.
 A. Then, yes.
Q. So assume for a moment that the expianation
satisfied His Lordship, you would agree that that
would be an acceptable method of calculation for
forensic purposes?
A. It's a strange question.
Q. I don't want to trick you, Doctor, I was just trying
to get down to the - we're winding down and I jugt
want to find out what the common denominators are
here.
If you can demonstrate to the people like myself,
and there are others, who feel that substructure
is a potential problem in this, that substructure
does not have a major impact, O.K., I think we would
agree. The question is going to be as a scientist
I choose personally, and I did read these pieces of
the testimony, to disagree with Doctors Carmody and
Kidd that differences of one in a million to one in
ten million are not important. I don't find that
difference to be what I would call scientiflcally
acceptable, even in forensic practice.
O.K., let's go io that, then, Doctor. You riled an
affidavit in Vandebogart which has been entered in
evidence here, and the purpose of the arfidavit was
to show the court there why you should be allowed to
get back on the stand to refute some of the testimony
of Dr. Budowle; is that right?
A. Mm-hmm.
Q. Correct me if I'm wrong, but part of what you did
was to actually take the data from the Legere case
and run it through the FBI composite Caucasian data

```
\begin{tabular}{|c|c|}
\hline & base which you've termed c3? A凶 I right? \\
\hline A. & That's correct. \\
\hline 0. & And you come up with, instead of 5.2 million on a \\
\hline & match, this particular wacch ld, with 56A, 69A - \\
\hline & Instead of \(5.2 \mathrm{million} \mathrm{that} \mathrm{the} \mathrm{R.C.M.P}\). \\
\hline & with you come up with 9.6 million? \\
\hline A. & That's correct. \\
\hline Q . & Under the \(F B I\), and you're suggesting - so rrom the \\
\hline & FBI's point of view the probabilities are even \\
\hline & lower - lower? \\
\hline A. & Smaller. \\
\hline 0. & Smaller, that you would expect to find the same \\
\hline & pattern, am I right, and you're suggesting as well, \\
\hline & Doctor, that the difference between - from a \\
\hline & statistically signiricant point of view with these \\
\hline & high powers, the difference between 5.2 million and \\
\hline & 9.6 miliion is statisticaliy significantly dirferent? \\
\hline A. & No, I'm auggesting that it's acientifically different \\
\hline & that it allows one to make different judgments, 0.K., \\
\hline & that one would be inclined to conclude that it's a \\
\hline & better plece of evidence if the probability is 1.96 \\
\hline & million, one in 9.6 million, than if it was one in \\
\hline & 5.2 million. That's all. \\
\hline 0. & But you find that there is a statistical - \\
\hline A. & And ir it's not, then \(I\) would just suggegt that we \\
\hline & always - and I think now that'g now becoming always \\
\hline & auggested, that we always take the upper confidence \\
\hline & limit on any of these and report that, always report \\
\hline & the biggest probability. \\
\hline 0. & O.K., but conridence intervals, O.K., you don't agree \\
\hline & then, Doctor, that there's any - let me put it this \\
\hline & way, you do not agree that there is no statistically \\
\hline
\end{tabular}
significant difference between 5.2 million and
9.6 million?
A. Depends on the sample size.
Q. The sample size, you know the sample size.
A. I would have to do the calculations. I think -
Q. They differ by a factor of two, don't they, Dootor,
5.2 and 9.6 ?
A. Little less than two.
Q. Well, considering the sample sizes of the R.C.M. P.
and FBI Caucasian data, you run the data through it, do you consider that to be a statistically significan oifference?
A. I suspect if you run the statistics it's not statistically significant.

So, Doctor, why oidn't you say that in your arfidavit that you filed in the Vandebogart ease?

Because I don't think that that's what's important.

The fact that these vary as much as they do, and that's what goes to a jury, I think ig more critical.

Well, what if we applied confidence intervals? Doesn't the confidence intervals allow anyone - we won't talk about a jury, but anyone, to look at the variation of range?

Yes.
It's really a scale, is it not, Doctor, to weigh the probabilities?

Yes, there are a number of people who've suggested ror a long time using upper confidence limits. And in ract, Doctor, you use confidence intervals yourself in your own work? Yes, I do. I read somewhere in one of your studies on insects

\section*{- 152 - Dr. Shields - Cross \\ (Voir Dire)}
```

or one particular rorm of insects that you actually
use confidence intervals when you're publishing your
data to show your -
A. What the allele frequencies are.
Q. Yes, the variance.
Q. You know that the small sizes that you're dealing
with you can't give an exact frequency, you have to
give a range of frequency around that? It could be
lower than or higher than, am I right?
Mm-hmm.
Q. So in tnis particular case with a }99%\mathrm{ confidence
interval, that is a pretty good scale to judge how
much weight to place on the particular number?
That depends strictiy on sample size and how well
the sample represents the population of interegt.
You can also put a confidence limit around the one
in 226,000, 0.K., that's right next to the 5.2 and
the 9.6 million.
But I'm dealing with simply the 5.2 million and the
9.6 million that you put down in that affidavit that
you swore to.
I think I talked about Nichols and Balding in that
affidavit.
No, I don't think so.
No, I didn't, because the paper hadn't come out yet,
you're right.
So you rererred to 9.6 million and 5.2 million,
right?
You're right.
And you actually pointed out in that affidavit that
that was, as far as you were concerned, a difference,
a big difference?

```
A. Yes, I agree.
A. Yes.
Q. But you will say here today that it's not a statistically significant difference?
A. No, I think it's a big difference and it's not statistically significant.
Q. O.K., it's not statistically significant?
A. Right.
Q. Differing by a factor of two at that high power?
A. Right. Uniess we were talking about really, really big samples of both, and in fact, if we were talking about big enough samples of both it would be statistically significant. Yes, but you know the sample sizes you were dealing, you run them through the computer? Yes, but they're still small, so they have big confidence limits. And which the observer can look and see what the variance is and let them weigh it, is that right? You would agree, Doctor, that perhaps giving the jury, for example, confidence intervais around whatever frequencies are generated would be one way of giving the jury a means of getting a feel for the sample size -

If it was around an appropriately conservative estimate, absolutely.

And if you applied the \(99 \%\) confidence intervals to the calculations you did when you run legere's through the FBI and you compared it with what was run through the R.C.M.P., it.shows that there really isn't any difference, is there, Doctor? No, it does show there's a difference. In fact, if you want to give me Dr. Carmooy's little thing I'll

Q.
A.
Q.
A.
Q. You said something in that Vandebogart arridavit that \(I\) was just curious about. You lookeo at the C3 data base, and I'm aware of the problem that you had in actually interpreting the \(C 3\) data base because of the cell lines that were in there, but when you did look at it after taking out the cell lines you found that the FBI data base was flawed by meagurement error or maybe I'm - perhaps you should look at the arfidavit. Bit Quizzical there, I don't want to misquote you. Would you look at page 4 of that particular affidavit, which is Exhibit 136 , and I'm looking at the top paragraph. Would you read me what you say there, Doctor, ano we'll have it in the right context? It's very short, I won't The whole paragraph?

Yes, please, if you wouldn't mind. So you want me to go back here? You want me to start at the page before or just there?
O. Perhaps -
A. "For example, the frequencies at D45139 remain
```

much larger and statistically significant for three
of the loci (Figs. 3 and 4). The rlip-rlop between
bIns 5 and 6 for locus DI7S79 still existg (Fig. 4)
and shows that many individuals were probably near
bin boundaries. At the same time the large changes
In adjacent bins, 13 and 14 and D2S44, (Eig. 4),
cannot be explained as simple movement between
adjacent bins. This is especially true since there
are no new individuals in the C3 data base as I
originally was led to believe so that the observed
variation mugt result from measurement error due to
problems with the molecular techniques or protocol
and not simply allele sampling error as I orlginally
had believed. The bottom line is that the FBI does
appear to have a reproduceability problem which
cannot be addressed by noting thet different rulers
Were used between the C2 and the C3 rerun data bases.
Now, correct me if I'm wrong, my understanding is
what you were saying is when the new Caucasian data
base, when they rerun, and you've assigned it C3 as
opposed to C2, but the - O.K., go ahead.
Q. O.K., now, what data bage did you compare to ~
A. The R.C.M.P.?
Q. The R.C.M.P. one.
A. Their rull c3 data base.
O. O.K.. and are you suggesting that there's problems
With that? Is that what you're saying there, that
there's problems with that C3 data base, that the

```

```

 the second time.
 O. I see, so you're not concerned nere, Doctor, with
when you compared it to the R.C.M.P. data base, the
FBI Caucasian data base - you're not concerned that
the FBI Caucasian data base was somehow flawed so
that it wouldn't be a true comparison between the
two, would you?
A. I don't know whether you're ever going to have true
comparisons between any of them. They say it's not
flawed, it'g what they use in case work. It's what
they use to compare to Texas. They added the
Texans, they added the California data base, they
added two Texan data bases, in fact, and florida,
and that's their C3 aata base, that's what they use
in case work, I presume. We all think that it's at
least surficiently robust that it is the probabili-
ties that - tney're going to use it to define
probabilities in the States, that's why I compared
It to the R.C.M.P.
Q. Being a valio comparison, in your opinion?
A. It's valid in terms of rrequencies, yes.
Q. Doctor, would you take chat affidavit for me,
please, and just flip to the rront cover? What'g
the exhibit number?
136,VD-136.
Q. And this morning you did a part or a slide
presentation and you actually refered to the
comparisons that you made between the R.C.M.P. and
FBI Caucasian data base.
Right.
Q. And in ract in that affidavit you attached many or
the same charts that you have entered here os

```



```

- 162 - Dr. Shields - Cross
(Voir Dire)

```

A.
Q. O.K., so if we go back to Nichols and Balding and
    their correction ractor and if we did - if we used
    the lower coefficient of inbreeding than . 05 and if
        We assume that the fixed bin method ameliorates
        some of the other problems you could, using the
        Nichols and Balding correction factor, approximate
        the same requencies that are now generated by the
        R.C.M.P. data base?
        I don't know whether you would or wouldn't. We'd
        have to do them.
Q. You've seen some of the figures that were generated?
A. Yes, \(1 f\) you used . 005 , and lve already suggested
    I don't chink that's - you want to know what I
        think? I'll tell you what I would do. I would take
        the band sharing which gives a probability for that
        particular \(4-10 c u s\) maten of one in 404,000 and do a
        99.7\% confidence 1 imit arcund that. That would be,
        to my way of thinking, sufficiently conservative.
        So do you want co change your opinion now, Doctor,
        and wy understanding was before \(I\) started the
        question was that you didn't believe that there was
```

sufficient knowledge yet with respect to VNTR
frequencies in caucasian populations to justiry the
figures that are being generaced?
A. That's correct. You didn't say all or the rigures,
you said the way it's being generated.
And then I asked you the question with respect to
the probability or this coincidental match of 5.2
million and you sald that's correct.
No, I'm not changing my testimony. What I'm saying
is that I don't think you can use the simple
binomial expansion and the product rule, O.K..
because of the problems of substructure in
particular. Given the problems of substructure,
If one has independent evidence for how much
substructure there is one can use band sharing to
generate a new probability or colncidental match
that will be sufficiently conservative that it is
not likely to be biaged in the wrong direceion,
because as you suggested, just as I admitted, when
more data come in maybe Dr. Kidd and Dr. Carmody
are going to be right and it really doesn't make
any difference, but when more data come in it just
might be the case that I'm right and Lander is right
and Lewontin is right and it does.
All right, let me ask you this question, Doctor,
does it ever enter your mind that perhaps Dr. Kidd
is in a slightly better position based on his
experience, his areas of study -
Than Eric Lander?
O. Than you, I'm not talking about Eric Lander because
I haven't had a chance to cross-examine him.
A. It crosses my mind but I don't believe so because

```
Q. Now, you have his data, Doctor, but you haven't
    taken into consideration, have you, his opinions?
    I'm sorry, but \(I\) think you misunderstand what
    science does. Science doesn't care about opinions.
        Science cares about what the data tell you. If you
        can take - I mean \(I\) can say black is white, but if
        I can measure it I don't need to listen to what
        somebody says about something being black or white.
        If \(I\) can measure it with a spectrophotometer that
        savs the light that's coming off of this object is
        black \(1 t\) doesn't matter what the opinion is.
        O.K., I wanted just to establish that. I jpst
        wanced to establish. Doctor, that you don't find
        Lt's necessary to take into consideration his
A.
0.
A.
Q.
A.
Q.
A.
Q.
A.
Q.
A.
opinion, you just want his data?
. You keep on saying that. I take his opinion into consideration every time \(I\) read his papers. Have you taken into consideration his interpretation of those papers, what they mean in relation to the Caucasian data base?

That's what we do is we write papers to give those interpretations.

Have you read his testimony? You nave not?
No, I have not.
Thank you. The questions pertaining to - I asked you some questions pertaining to the 5.2 mililion male Caucasians and the confidence interval around that, and that in all likelihood could be correct if there's sufficient data, could be borne out by that?
A. Background band sharing and the fact that the French VNTR's at two loci are different from the Canadian, the general Canadian data base. All right, and again you've read Dr. Kidd's opiniong with respect to the Amerindian population and what impact that has on the caucasian populations in this particular case, you've read that? And I agree with him to the extent that Native American populations are likely to be more inbred than caucasian populations in North America for the very good reason that they tend to be more endogamous, they tend to be less random mating.
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& \text { - } 167 \text { - Dr. Shields - Cross } \\
& \text { (Voir DLre }
\end{aligned}
\] \\
\hline Q. & So when you look at the Amerindian data you would \\
\hline & expect to see that particular types of data? \\
\hline A. & Can I just do something, though? When we're doing \\
\hline & a Frye hearing in the States it isn't about the \\
\hline & explicit case, it's about the ract that cellmark \\
\hline & and the EBI have one Indian data base, they use one \\
\hline & Indian data base and develop probabilities on the \\
\hline & basis of that. Yes, the R.C.M.P. does a better job. \\
\hline & but they have not to my knowledge yet demonstrated \\
\hline & that there's no variation between french-speaking \\
\hline & Canadians and English-speaking Canadians or between \\
\hline & the people in New Brunswick and the people nere. \\
\hline & The point that we make with his American Indian data \\
\hline & his Native American data, are that there are \\
\hline & differences within races of humans. \\
\hline Q. & And that's why this morning you demonstrated the \\
\hline & dirference between the statiatically signiflcant \\
\hline & differences in bin trequencies between the blacks, \\
\hline & between the Amerindians, the Canadian Native \\
\hline & Indians, right? \\
\hline A. & Right. \\
\hline Q. & And do you simply discount the fact, Doctor, that \\
\hline & the same kind of teata were done on the canadian \\
\hline & Caucasian populations and there is no differences? \\
\hline A. & No, I say that that's reasonable and that's prima \\
\hline & racie evidence that maybe Canada has less sub- \\
\hline & structure in their caucasian population, but I also \\
\hline & have evidence from this case of background band \\
\hline & sharing and from an affidavit by Dr. Carmody that \\
\hline & says that there are significant VNTR oifferences \\
\hline & between the french and the canadians. They're both \\
\hline & Caucasians. \\
\hline
\end{tabular}
```

 - 168 - Dr.Shields - Cross
 (Voir Dire)
 Q. What affidavit are you referring to, Doctor?
A. Well, it's an exhibit. the one we keep on ~ I'm
sorry, it's not an affidavit. It's the one we keep
on looking at. What is it?
You're not referring to France, are you, Doctor, the
two loci in France?
Yes.
Q. You lump in the country of France with North
Americans?
We're Caucasians, I think.
So in your estimation, your study of worldwide
populations, that is a significant difference to
you, is it?
It falls outside of the Canadian 99.7% confidence
interval for those two.
But in your study of world populations, Doctor,
that - you do study world populations, don't you?
I have looked at oata from populations around the
world.
As much as Dr. Kido would have done?
Probably not.
No, and you would be interested in knowing his
opinion - you wouldn't be interested in knowing his
opiniong of that particular French data, would you,
you make up your own mind?
Yes.
That's what I thought. Thank you, Doctor, I have
no further questions.
THE COURT: Now, re-examination?

```

\section*{REDIRECT EXAMINATION BY MR. FURLOTTE:}
Q.
A.
A. Yes, I do, on an everyday basis.
Q. Is Dr. Kidd any different rrom you in this aspect?
A. I actually would have to talk to him to find out.
```

 I might rind out arter talking ro him that he was
 as good or better. I might flnd out that I thought
I was a little better than he was in this aspect,
but he certainly uses the same tools and techniques
that I do, both in terms of demography and in terms
of genetics.
Q. What eminent population geneticists would rall under
the theoretical or mathematical aspect?
Sewell Wright is probably the top name, in my
opinion, recently deceased, the father of modern
population genetics, along with Sir Ronald Fisher
from Great Britain and Haldane from Great Gritain.
More recently people who have been developing
theory include people like Russ Lande and Rick
Michaud and Richard Lewontin throughout his entire
career developed a lot of theory, Jonathan
Rurgarden, there are a variety of names. Most of
them have never seen an organism in their entire
lives, human or otherwise.
Q. So basically Dr. Kldd, like yourself, are people
who use their theories and their expertise so you
can get on with your work?
In essence we borrow from them to do what we want
to do, or we test the theories.
Q. Now, the fact that you deal primarily uith animal
populations, and Mr. Walsh was getting that Dr.
Kidd deals mostly with human populations, would that
make Dr. Kidd any more of an expert than yourseif
to use the theoretical or mathematical aspect or
population genetics?
A. I doubt it. I hope not. Otherwise I would probablg
claim greater expertise than Dr. Carmody since he
works on flies and I work on mammals.

```
Q.

Now, Mr. Walsh also asked you if you read the transeripts of other trials where Dr. Kidd testified to see how valid - or whether his opinions were valid or not. I believe you stated you don't subseribe to transcripts from other trials to read his opinion?
    If an attorney gives me a transcript and given the
        time \(I\) will read it, but that's the only time I
        read them, if they want we to read it for a
        particular reason.
Q. And in answering Mr. Walsh you referred that while
        you dian't read the transeript of the evidence
        given by Dr. Kidd you had read the affidavit by
        Dr. Kartl in response to Dr. Kidd's comments on the
        non-significance of substructuring?
A. That's correct.
Q. And do you bave a copy of Dr. Hartl's afridavit?
A. Yes, I do.
Q. And could you read what Dr-Hartl had to say about
        Dr. Kidd's non-concern about substructuring and
        exactly what Dr. Kidd's testimony was?
MR. WALSH: I object, My Lord. Uniess I'm going to get an
    opportunity to cross-examine Dr. Hartl I don't see
    how that affidavit can be properly put into evidenco.
MR. FURLOTTE: Well, I'm not putting the arfidavit into
        evidence, My Lord.
MR. WALSH: Well, if he's going to read fromit, we can't
    hold our fingers in our ears. \(\{\) mean -
THE COURT: Well, let's hear what he had to say anyway.
MR. FURLOTTE: You read a lot of the rranscript that hasn't
been put into evidence.

The data are the data that \(I\) presented for the Karitiana, the Surui, and the Mayan data bases, and he states that - this is Dan Hartl stating - "My analysis of these data and the examples provided stand in contrast to the following opinions regarding the data which were stated or ioplied in court by Dr. Kidd. One, no populations are ever Clxed ror VNTR alleles. Compare DI8S27 and Karitiana where there was only one allele round. The Karitiana and Surui data bases do not differ from one another. Three" -
Dr. Kidd made that statement, that's what Dr. Marti
is saying?

That's what Dr. Hartl said he said, and they do differ. "Three, that it does not matter what data base you use for forensic calculations because all the numbers are small and any particular band pattern is uncommon. In the particular example used in this report the accumulated error over three VNTR loci cauged by using the Karitiana rather than the Surui data base is a factor of at least 500. In wy opinion no credible research scientist would ever treat the numbers one in 213,000 and one in 400 as if they were equal on the grounds that both are small."
Q. And in fields or expertise how would you rate Dr. Kidd to Dr. Hartl?
A. Let me just say that both of them are eminent geneticists. Dr. Hartl is certainly as eminent as Dr. Kidd, and \(I\) tbink wy eminence is a little bit less, or maybe a lot less.
Q. Now, Mr. Waleh questioned you also on how ottawa or
now the R.C.M. P. obtained their data base and that the evidence that you gave in the Bourguignon case was that you found it was an excellent attempt at a random sample.
Ma-ham.
Q. Aside from picking a random sample the way the R.C.M.P. did to assume that maybe they were getting samples from across the country, would it be still legitimate or better or worse if there was a direct attempt and deliberate attempt to make sure you had so many people from New Brunswick, so many people from each province, so many people from french origin and so many people from English origin? rather than just doing it randomly? MR. WALSH: I object, My Lord. I understand that this was covered earlier this morning. I thought that that was part of the reason he put Dr. Shields on the stand.
MR. FURLOTTE: I didn't cover that aspect - I don't recall covering that aspect in direct examination.
THE COURT: Let's go ahead but I tbink you are perhaps tending to repeat a little, or get into the same territory. However, let's have this question answered.
A. Probably the best would be to set out and have all the information that you could possibly have, but in many senses that's not necessarily practical. IE would be better to actually get them - if you wanted a representative random sample of the whole country you probably should do a lottery and call them on the phone like Davio Letterman, would you please donate blood today.

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{5- Dr. Shieids - Redirect \({ }^{\text {(Voir Dire) }}\)} \\
\hline \multicolumn{2}{|r|}{until - when that book was published in 1971 that} \\
\hline & was the highest, but \(I\) happen to know for a ract \\
\hline & that since then there have been higher. \\
\hline \multirow[t]{2}{*}{\(Q\).} & So that was 1971 that they were referring to that \\
\hline & data. \\
\hline \multirow[t]{3}{*}{A .} & Thereabouts. It's also the standard that we all \\
\hline & use because nobody has ever published another book \\
\hline & to replace it with more modern data. \\
\hline \multirow[t]{9}{*}{Q.} & I believe Mr. Walsh referred that when you used \\
\hline & the common band sharing in this case amongst the \\
\hline & flve individuals on one test gel that you did your \\
\hline & frequency calculations with, earlier you said you \\
\hline & just visualized the band sharings of the other five \\
\hline & suspects and found a lot of common bands there for \\
\hline & the Newcastle area, so that would be ten people \\
\hline & rather than five that you're basing your common \\
\hline & band sharing on? \\
\hline \multirow[t]{11}{*}{A} & Well, I didn't count them because I didn't have \\
\hline & simultaneously all of the gels and I oidn't have \\
\hline & time to do this, and the sizings. All I noticed \\
\hline & was there was still band sharing, wore than I've \\
\hline & seen in other cases. In the ten cases that I've \\
\hline & been involved in, except for the Bourguignon \\
\hline & family which was all brothers and aunts and uncles, \\
\hline & this case had more band sharing than I ve geen. \\
\hline & Sorry, the second to most band sharing that i ve \\
\hline & seen. I saw more band sharing in one case in \\
\hline & Syracuse. \\
\hline \multirow[t]{4}{*}{Q} & And Mr. Waish had asked you what way would you do it \\
\hline & to be conservative, and I believe you answered the \\
\hline & way that you would do it Hould - you'd consider \\
\hline & the degree of band sharing that you did calculate \\
\hline
\end{tabular}
```

 for the legere case, and I forget which figure
 you come to, and then you would use the 99% upper
 confidence interval to come out with a figure, and
 could you do that for us?
 A. No, not sitting right here right now. I don't have
the formulas with me.
MR. FURLOTTE: You don't have the formulas. No further
questions.
THE COURT: Thank you very much. That finishes with this
Witness, then, and I guess you're free to go,
Doctor. Did you know Woody Hayes of Ohio State
University?
DR. SHIELDS: I certainly dio
THE COURT: His sister married Dick Larkin who was the
freshman rootball coach. Did you know him, too?
DR. SHIELDS: I didn't know Larkin. I knew woody Hayes.
THE COURT: Larkin cold me once 57 years ago that I had a
great future as a world class high-jumper, and I
was going to say that if ever you went to a
homecoming there that you might pasg the word along
that his forecast was a miserable fallure.
DR. SHIELDS: I'Il do that, Your Honour.
THE coURT: Now, let me see, have you any other witnesses?
MR. FURLOTTE: I have no further witnegses.
THE COURT; You have no rebuttal evidence?
MH. WALSH: if I just had a second, My Lord. I don't
believe so, I just want to double-check. No, My
Lord, I have no rebuttal.
THE COURT: All right. That, then, concludes this aspect
of the voir dire, and the only remaining item is
argument on the DNA aspect and I think we talked

```
```

 about Thursday, June 6th, and if necessary, with
 the emphasis on if necessary, Friday, June 7th as
 well. Could that be completed in one day, do you
 think? Well, I'm available both days and we'll be
 available.
 MR. WALSH: I'm attempting to draft, My Lord, as you
suggested the last day, a form of a written outline
to follow the arguments. If I'm able to succeed in
doing that by then I wouldn't expect that I would
be - I wouldn't use up any more than a half a day.
MR. FURLOTTE: I don't expect to use any more than half a
day.
THE COURT: He'll probably finish on the 6th, then, so
nine-thirty on the 6th, Thursday, the 6th of June.

```
```

HER MAJESTY THE QUEEN
- and -
ALLAN J. LEGERE

```

\section*{AFFIDAVIT}
1. THAT I am a stenographer duly appointed under the Recording of Evidence By Sound Recording Machine Act.
2. TRAT this transcript is a true and correct transeription of the record of these proceedings made under Section 2 and certified oursuant to Section 3 of the Act. 3. THAT a true copy of tife certifiaate made pursuant to Section \(3(1)\) of the Act and accompanying the record at the time of its transcription is appended hereto as Schedule "A" to tRis affidavit.


A CO:NIISSIONER OF OKさfy

\section*{SCHEDULE nA"}

\section*{RECORDING OF EVIDENCE BY SOUND RECORDING MACHINE ACT}

\section*{CERTIFICATE}
```

I, Verna Peterson, of Fredericton, New Brunswick, certify that the sound recording tapes labelled through $\$ 6$, Vair Dire, R. v. Allan J. Leger, J.D., May 27/9l, initialed by me and enclosed in this envelope are the record of the evidence (or a portion thereof) recorded on a sound recording machine pursuant to Section 2 of the Recording of Evidence by Sound Recording Machine Act at the voir dire held in the above proceeding on the 27th of May, ag Fredericton, New Brunswick, and that I was the person in charge of the sound recording machine at the time the evidence and proceeding a were recorded.

```
```

dATED AT FREDERICTON, N. B., the 27th day of May , 1991.

```
```

