

RVING PAPER

WASTEWATER TREATMENT UPGRADE

Rachel Kierstead, Emily Morgan, Matthew Phillips, Jacob Wall

PROJECT SUMMARY

OBJECTIVE: To modify the existing wastewater treatment system at Irving Paper Limited (IPL) to reduce biochemical oxygen demand (BOD) and total suspended solids (TSS) in order to meet the proposed 2021 Pulp & Paper Effluent (Wastewater) Regulations (PPER)

O

IPL uses thermo-mechanical pulp and Kaolin clay to produce 1,150 t/day of high-quality printing papers and newsprint

Must process 35,000 m³/day of wastewater

The wastewater entering the treatment system has higher levels of BOD in the winter months

ト	
ί ι)	New PPER expected to come into effect in 2021

Maximum Allowable Limits			
Factor	TSS (t/day)	BOD (t/day)	
PPER (1992)	12.7	8.5	
PPER (2021)	1.7	0.8	
Reduction	87%	90%	

- The current system uses a primary clarifier to remove TSS and an aerated stabilization Q basin to remove soluble BOD.
 - To meet the 2021 PPER, the chosen design uses a moving bed biofilm reactor seasonally to accommodate the higher BOD levels in the winter. A secondary clarifier and sludge handling system are used to remove TSS and dewater the sludge, year-round.
 - This process has an added annual operating cost of \$1.45 M/year and a total capital investment of \$12.35 M. The treatment system is not profitable by itself, but it will allow IPL to continue operating.

CHOSEN DESIGN

Design Layout

The MBBR is located near the existing primary clarifier; the secondary clarifier and secondary sludge handling system are located near the existing ASB

ECONOMICS

CONCLUSIONS

Engineering

ymposium

Design

RECOMMENDATIONS

Acknowledgments

Ms. Gabriella Murphy, P.Eng, Mr. Nick Grandy, EIT; Dr. Zhongguo Dai, P.Eng; Dr. Yang Qu; Dr. Guida Bendrich, P.Eng; Dr. Michel Couturier, P.Eng; Ms. Sylvia Demerson Locke; Ms. Karen Annett

