BRIDGEWORKS

Background

Bay du Vin Bridge no. 5 located south-east of Miramichi is in need of replacement due to high water elevations damaging the bottom of the bridge, along with inadequate dimensions with respect to TAC standards.

Goal and Objectives

NBDTI has requested the design of three alternative bridges to replace Bay du Vin Bridge no. 5 utilizing steel, concrete or timber to serve as a feasibility study between the three materials.

This was achieved by completing the following objectives:

- Determination of the new bridge elevation to accommodate future high water. Design of the timber, steel and concrete bridges in accordance with CSA-S6 along with realignment of the approaching roads.
- Sustainability & lifecycle cost assessment for comparison of the building material.

	Road Work				
	Bridge Type	Surface Elevation Increase (m)	Total Fill \		
[1]	Concrete	1.58	2		
[2]	Steel	1.49	1		
[3]	Timber	2.12	11		

PREPARED BY:

BRIDGE ALTERNATIVES DESIGN & MATERIAL COMPARISON

Bridge Details									
Bridge	Beams			Deck		Barriors	l ateral		
Туре	# Of	Depth (mm)	Туре	Depth (mm)	Туре	(TL-4/PL-2)	Bracing		
Concrete	5	1000	New England Bulb Tees	225	Reinforced	New-Jersey Shaped	None		
Steel	5	923	W920x313 I-Beam	223	Concrete	Alaskan Multi-State Railing	K-Bracings near supports		
Timber	9	1330	Glued- Laminated	235	Transverse Glued- Laminated With Floor Beams	Crash Tested Timber Barrier	4 Sets of Timber Diaphragms		

CLIENT: SUSAN MAYO, P.ENG. **NEW BRUNSWICK DEPARTMENT OF TRANSPORTATION AND INFRASTRUCTURE**

evaluated.

* Variance is due to some sub-criteria being subjective in evaluation

Cost Estimate									
Bridge	Туре	Concrete		Steel		Timber			
Desi	ign	\$	99,000	\$	120,000	\$	135,000		
Constru	uction	\$ 1,229,000		\$ 1,495,000		\$ 1,683,000			
Low Es	timate	\$ 860,000		\$ 1,047,000		\$ 1,178,000			
Со	st	\$ 1,328,000		\$ 1,615,000		\$ 1,818,000			
High Es	stimate	\$ 1,843,000		\$ 2,243,000		\$ 2,624,000			
Operation & N (Present worth o	<i>Aaintenance</i> of 75 year life)	\$	40,000	\$	45,000	\$	151,000		
Lifecycle Costs									
\$2.50									
\$2.25	StS						5 Yrs		
Suoj \$2.00	о С Ц						ife (7		

Summary of Results

From the analysis, 2020 Bridgeworks concludes:

- An expected high water elevation rise of 1.15m for a 1 in 100-year event while considering climate change.
- Timber was found to be most sustainable; however, has an increased lifecycle cost.
- Steel and concrete resulted in similar maintenance costs with timber requiring additional intermediate repairs.
- Concrete resulted in the lowest total cost followed by steel and timber, respectively.

