

Report Capture: 01-02-2018 to 08-02-2018

1-Introduction

The first honeypot studies released by Clifford Stoll in 1990, and from April 2008 the Canadian Honeynet chapter was founded at University of New Brunswick, NB, Canada. UNB is a member of the <u>Honeynet</u> Project, an international non-profit security research organization.

In computer terminology, a honeypot is a trap set to detect, deflect or in some manner counteract attempts at unauthorized use of information systems. Generally, honeypots essentially turn on the tables for Hackers and computer security experts and it consists of a computer, data or a network site that appears to be part of a network but which is isolated, and which seems to contain information or a resource that would be of value to attackers.

There are some benefits of having honeypot:

- Observe hackers in action and learn about their behavior
- Gather intelligence on attack vectors, malware, and exploits. Use that intel to train your IT staff
- Create profiles of hackers that are trying to gain access to your systems
- Improve your security posture
- Waste hackers' time and resources
- Reduced False Positive
- Cost Effective

Our primary objectives are to gain insight into the security threats, vulnerabilities and behaviour of attackers, investigate tactics and practices of hacker community and share learned lessons with IT community and appropriate forums in academia and law enforcement in Canada. So, CIC decided to use cutting edge technology to collect dataset for honeypot.

These reports are generating based on the weekly traffic. For more information and requesting the weekly captured data, please contact us at a.habibi.l@unb.ca.

2- Technical Setup

In Honeynet dataset, we have defined a separated network with these services:

- Email Server(SMTP-IMAP)
- FTP Server
- File Server
- Web Server (Apache:WordPress-MySql)
- SSH(Kippo)
- Http
- Https

Each user has a real behaviour and surf the Internet based on above protocols. Web server is accessible for public and anyone who can see the website. Inside network, we put an Untangle firewall at the edge

of network and NAT different services for public user. Traffic of network passes through firewall based on users surfing via network. Some ports such as 20, 21, 22, 53, 80, 143, 443 are open on the firewall based on services are defined on the network.

Furthermore, we add WordPress 4.9.4 and MySql as database to publish some content on the website. The content of website is news and we have formed kind of honeypot inside of contact form. So, bots when they want to produce spams we can grab these spams with kind of tools which is called "Contact Form 7 Honeypot" (Figure 1).

Figure 1: Contact Form 7 Honeypot

To absorb attackers, beside real network, some ports and services intentionally have been opened. Some policies such as password have not been regarded.

Real data traffic is passes through PCs which are separated and not accessible in network and via Tap all traffic is captured by TCPDUMP.

3- Logging & Data Collection

Everything that happens on the honeypot is logged for analysis. These are some features of logs:

- Source IP
- Source Port
- Destination
- Destination Port
- Protocol
- Timestamp
- Flow Duration
- Flow Bytes
- Fwd Packets
- ..

As above-mentioned <u>CICFlowMeter</u> offers more flexibility in terms of choosing the features you want to calculate, adding new ones, and also having a better control of the duration of the flow timeout.

The traffic which is captured by TCPDUMP is analysed with **CICFlowMeter** which is generated by CIC. We analysis flow of traffic to know whom, when and which server is attacked by attackers

Also, we use Security Onion for analysing inside traffic and <u>Untangle</u> firewall for traffic of edge of network. The traffic of inside and outside firewall is captured by two taps and again it is analysed by **CICFlowMeter**.

To simulate SSH for attackers, we use <u>Kippo tools</u> and is intended to mimic a SSH command. Kippo can capture commands and the password users enter. Some easy password such as 1234, 123,... are entered in Kippo database so attackers can easily reach the server.

4- Analysis and Result

4.1 login attempts

We analyzed the IP addresses that made login attempts using the <u>Domain Bulk look IP</u>, We received login attempts from 101 unique IP addresses in 32 countries; the breakdown by country is shown in table 1.

Table1: IP breakdown by country

IP	Country	Number of Attack
103.99.2.3	Vietnam	270
195.3.147.49	Latvia	129
182.100.67.235	China	125
222.186.31.136	China	118
27.254.94.69	Thailand	98
60.29.111.248	China	79
109.236.91.85	Netherlands	70
78.138.88.198	Germany	67
27.72.61.42	Vietnam	61
193.201.224.206	Ukraine	61
221.194.47.245	China	47
5.188.10.156	Croatia	43
221.194.47.221	China	41
121.18.238.39	China	41
115.238.245.8	China	40

IP	Country	Number of Attack
221.194.47.233	China	40
221.194.47.236	China	40
121.18.238.125	China	38
221.194.44.211	China	37
221.194.47.239	China	37
221.194.47.243	China	31
115.238.245.2	China	31
122.226.181.165	China	31
205.209.142.174	United States	30
115.238.245.6	China	30
115.238.245.4	China	30

This list is proved by our <u>Security Onion</u>, which is demonstrated in Figure 2. Also we can prove it in Squert and SGUIL which are tools of Security Onion to detect exactly attackers. For example in Figure 3 and Figure 4, we evaluate 115.238.245.4 IP address and as it is demonstrated in Figure 2,3,4 all tools detect this IP address as a brute force attack.

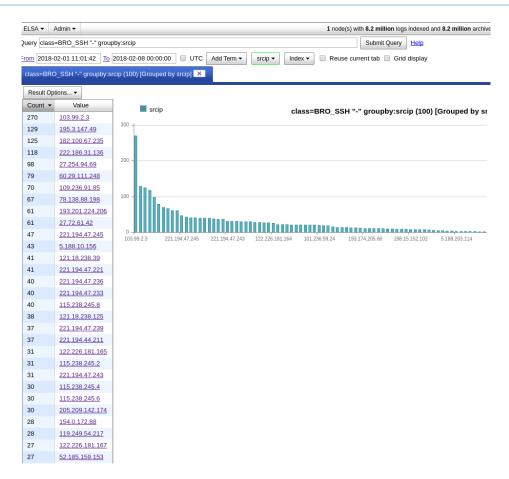


Figure 2: attack Count in Elsa

Figure3: Squert tools

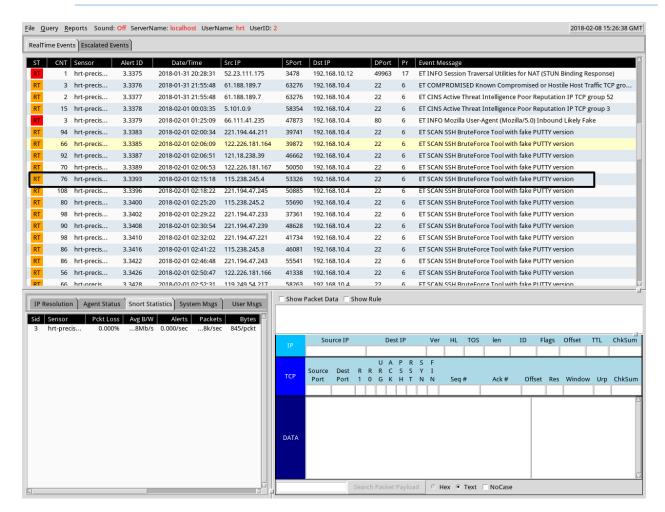


Figure 4: SGUIL tools

Based on IP and with using <u>GEO location tools</u>, we can demonstrate approximate locations of IP address which is presented on Figure 5.

Figure 5: The approximate locations of the IP addresses

Based on Untangle firewall report, from 1500 sessions, around 87% of sessions is on SSH, 1% on FTP, 10% on HTTP and finally 2% is on POP3 (Figure 6).

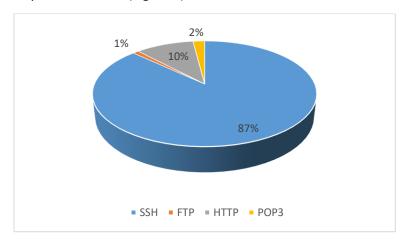


Figure6: top sessions ports

4.2 TOP Username and password for brute force attack

For brute force attack, attackers use kind of username and password which is listed in table 2,3:

Table2: common username used by attackers

	username	Number of occurrence
1	root	4831
2	admin	954
3	user	765
4	pi	117
5	support	49

Table3: common password used by attackers

	password	Number of occurrence
1	123	2077
2	1234	1315
3	123456	192
4	password	122

Security tips: It is recommended for preventing brute force attack, use username which is not common such as user457 or CompanyNameFamilyName. Using common username opens up opportunity for attackers to brute force your server. For example using username such as root, admin, user, usr are bad practise of using username.

4.3 TOP Commands

Table 4, shows the most common commands used by attackers. (All commands are available in captured data)

Table4: common command used by attackers

	command	Number of occurrence
1	Is	10
2	Running their code	4
3	Unkown command from Bots	3

We are dealing with kind of Bot which use kind of code for changing file system. (All executed commands by Bots through SSH are available in captured data)

4.4 Hours of login

Based on this week observation attackers try to attack 24 hours. It seems that kind of Bot is responsible of attacks, so attackers run it 24 hours to find a gap in any servers.

4.5 Inside Network

Inside Network activities which are logged by <u>Security Onion</u> are shown in figures 7, 8 and 9. This traffic includes http, ftp, SSH, and system logs.

Figure7: TOP SSH PORT

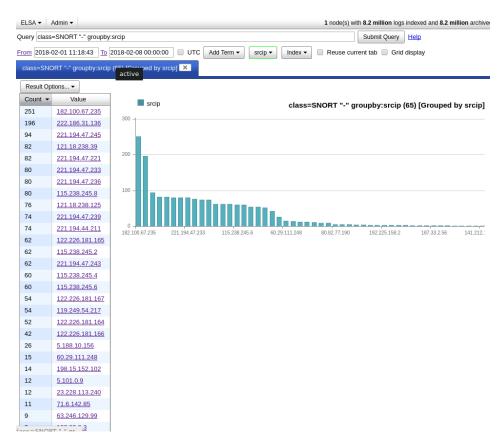
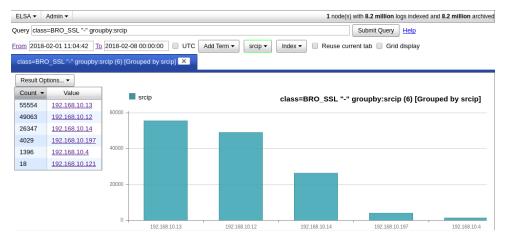



Figure8: TOP Destination IP from Local Users

Figure9: TOP Local Users